diff --git a/opam b/opam
index 5318f354a0e1e4d663d675f5a50c5bc4fbbc7c3e..1385e6ddb09bcbf4ed1cf24b621891d5329e8c85 100644
--- a/opam
+++ b/opam
@@ -12,5 +12,5 @@ install: [make "install"]
 remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"]
 depends: [
   "coq" { (= "8.7.2") | (= "8.8.2") | (>= "8.9" & < "8.11~") | (= "dev") }
-  "coq-stdpp" { (= "dev.2019-09-19.0.b53cbe77") | (= "dev") }
+  "coq-stdpp" { (= "dev.2019-09-19.1.9041e6d8") | (= "dev") }
 ]
diff --git a/theories/algebra/gmap.v b/theories/algebra/gmap.v
index 021184995f8e095853db0f7ff389b4fff3170762..db8e78d06bda139f1a58b14e60fbba059909f683 100644
--- a/theories/algebra/gmap.v
+++ b/theories/algebra/gmap.v
@@ -195,7 +195,7 @@ Global Instance lookup_op_homomorphism :
   MonoidHomomorphism op op (≡) (lookup i : gmap K A → option A).
 Proof. split; [split|]; try apply _. intros m1 m2; by rewrite lookup_op. done. Qed.
 
-Lemma lookup_opM m1 mm2 i : (m1 ⋅? mm2) !! i = m1 !! i ⋅ (mm2 ≫= (!! i)).
+Lemma lookup_opM m1 mm2 i : (m1 ⋅? mm2) !! i = m1 !! i ⋅ (mm2 ≫= (.!! i)).
 Proof. destruct mm2; by rewrite /= ?lookup_op ?right_id_L. Qed.
 
 Lemma lookup_validN_Some n m i x : ✓{n} m → m !! i ≡{n}≡ Some x → ✓{n} x.
diff --git a/theories/algebra/gmultiset.v b/theories/algebra/gmultiset.v
index 7572718e9d9d33c329fa10e733eb7a77974a932d..6951db04bad8fe3aa9def5cbac822105fac039e6 100644
--- a/theories/algebra/gmultiset.v
+++ b/theories/algebra/gmultiset.v
@@ -52,7 +52,7 @@ Section gmultiset.
 
   Global Instance gmultiset_cancelable X : Cancelable X.
   Proof.
-    apply: discrete_cancelable=> Y Z _ ?. fold_leibniz. by apply (inj (X ⊎)).
+    apply: discrete_cancelable=> Y Z _ ?. fold_leibniz. by apply (inj (X ⊎.)).
   Qed.
 
   Lemma gmultiset_opM X mY : X ⋅? mY = X ⊎ default ∅ mY.
@@ -64,7 +64,7 @@ Section gmultiset.
   Lemma gmultiset_local_update X Y X' Y' : X ⊎ Y' = X' ⊎ Y → (X,Y) ~l~> (X', Y').
   Proof.
     intros HXY. rewrite local_update_unital_discrete=> Z' _. intros ->%leibniz_equiv.
-    split; first done. apply leibniz_equiv_iff, (inj (⊎ Y)).
+    split; first done. apply leibniz_equiv_iff, (inj (.⊎ Y)).
     rewrite -HXY !gmultiset_op_disj_union.
     by rewrite -(comm_L _ Y) (comm_L _ Y') assoc_L.
   Qed.
diff --git a/theories/algebra/list.v b/theories/algebra/list.v
index e89df5de08ac39fc18cd5a78579d03bb0aa3e508..c39d29610e8f78ae37aa651540c239461a2974fa 100644
--- a/theories/algebra/list.v
+++ b/theories/algebra/list.v
@@ -278,7 +278,7 @@ Section properties.
   Local Arguments cmra_op _ !_ !_ / : simpl nomatch.
   Local Arguments ucmra_op _ !_ !_ / : simpl nomatch.
 
-  Lemma list_lookup_opM l mk i : (l ⋅? mk) !! i = l !! i ⋅ (mk ≫= (!! i)).
+  Lemma list_lookup_opM l mk i : (l ⋅? mk) !! i = l !! i ⋅ (mk ≫= (.!! i)).
   Proof. destruct mk; by rewrite /= ?list_lookup_op ?right_id_L. Qed.
 
   Global Instance list_op_nil_l : LeftId (=) (@nil A) op.
@@ -426,7 +426,7 @@ Section properties.
 
 (* FIXME
   Lemma list_middle_local_update l1 l2 x y ml :
-    x ~l~> y @ ml ≫= (!! length l1) →
+    x ~l~> y @ ml ≫= (.!! length l1) →
     l1 ++ x :: l2 ~l~> l1 ++ y :: l2 @ ml.
   Proof.
     intros [Hxy Hxy']; split.
@@ -446,7 +446,7 @@ Section properties.
         rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
   Qed.
   Lemma list_singleton_local_update i x y ml :
-    x ~l~> y @ ml ≫= (!! i) → {[ i := x ]} ~l~> {[ i := y ]} @ ml.
+    x ~l~> y @ ml ≫= (.!! i) → {[ i := x ]} ~l~> {[ i := y ]} @ ml.
   Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed.
 *)
 
diff --git a/theories/algebra/updates.v b/theories/algebra/updates.v
index 4e1f96c720619eb406872ade12a1e65bd92e397a..fe53c2a9cc010bb0ee245a4ea7866c9e231ac0a7 100644
--- a/theories/algebra/updates.v
+++ b/theories/algebra/updates.v
@@ -32,7 +32,7 @@ Proof.
   rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
 Qed.
 
-Lemma cmra_update_updateP x y : x ~~> y ↔ x ~~>: (y =).
+Lemma cmra_update_updateP x y : x ~~> y ↔ x ~~>: (y =.).
 Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
 Lemma cmra_updateP_id (P : A → Prop) x : P x → x ~~>: P.
 Proof. intros ? n mz ?; eauto. Qed.
@@ -42,7 +42,7 @@ Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
 Lemma cmra_updateP_compose_l (Q : A → Prop) x y : x ~~> y → y ~~>: Q → x ~~>: Q.
 Proof.
   rewrite cmra_update_updateP.
-  intros; apply cmra_updateP_compose with (y =); naive_solver.
+  intros; apply cmra_updateP_compose with (y =.); naive_solver.
 Qed.
 Lemma cmra_updateP_weaken (P Q : A → Prop) x :
   x ~~>: P → (∀ y, P y → Q y) → x ~~>: Q.
diff --git a/theories/base_logic/derived.v b/theories/base_logic/derived.v
index 3c9527a6fb280a8f7a0968d58d8442cdeb39e4a1..ff82d926f79385bd29c32102b256da86c3dd735d 100644
--- a/theories/base_logic/derived.v
+++ b/theories/base_logic/derived.v
@@ -55,7 +55,7 @@ Proof.
 Qed.
 Lemma bupd_ownM_update x y : x ~~> y → uPred_ownM x ⊢ |==> uPred_ownM y.
 Proof.
-  intros; rewrite (bupd_ownM_updateP _ (y =)); last by apply cmra_update_updateP.
+  intros; rewrite (bupd_ownM_updateP _ (y =.)); last by apply cmra_update_updateP.
   by apply bupd_mono, exist_elim=> y'; apply pure_elim_l=> ->.
 Qed.
 
diff --git a/theories/base_logic/lib/boxes.v b/theories/base_logic/lib/boxes.v
index 1aa38e78b917db6e67532236d7bbc05b06ba7a5e..8a89e79350fb1d754a34a30a74bd1ffb38c24046 100644
--- a/theories/base_logic/lib/boxes.v
+++ b/theories/base_logic/lib/boxes.v
@@ -220,7 +220,7 @@ Qed.
 
 Lemma box_empty E f P :
   ↑N ⊆ E →
-  map_Forall (λ _, (true =)) f →
+  map_Forall (λ _, (true =.)) f →
   box N f P ={E}=∗ ▷ P ∗ box N (const false <$> f) P.
 Proof.
   iDestruct 1 as (Φ) "[#HeqP Hf]".
diff --git a/theories/base_logic/lib/invariants.v b/theories/base_logic/lib/invariants.v
index b00b422411ae73adf1eca465593e078d60f70f9b..0b6d69a7263531496d2bc29bb6aacb5a92d6f124 100644
--- a/theories/base_logic/lib/invariants.v
+++ b/theories/base_logic/lib/invariants.v
@@ -53,7 +53,7 @@ Qed.
 Lemma inv_alloc N E P : ▷ P ={E}=∗ inv N P.
 Proof.
   rewrite inv_eq /inv_def uPred_fupd_eq. iIntros "HP [Hw $]".
-  iMod (ownI_alloc (∈ (↑N : coPset)) P with "[$HP $Hw]")
+  iMod (ownI_alloc (.∈ (↑N : coPset)) P with "[$HP $Hw]")
     as (i ?) "[$ ?]"; auto using fresh_inv_name.
   do 2 iModIntro. iExists i, P. rewrite -(iff_refl True%I). auto.
 Qed.
@@ -62,7 +62,7 @@ Lemma inv_alloc_open N E P :
   ↑N ⊆ E → (|={E, E∖↑N}=> inv N P ∗ (▷P ={E∖↑N, E}=∗ True))%I.
 Proof.
   rewrite inv_eq /inv_def uPred_fupd_eq. iIntros (Sub) "[Hw HE]".
-  iMod (ownI_alloc_open (∈ (↑N : coPset)) P with "Hw")
+  iMod (ownI_alloc_open (.∈ (↑N : coPset)) P with "Hw")
     as (i ?) "(Hw & #Hi & HD)"; auto using fresh_inv_name.
   iAssert (ownE {[i]} ∗ ownE (↑ N ∖ {[i]}) ∗ ownE (E ∖ ↑ N))%I
     with "[HE]" as "(HEi & HEN\i & HE\N)".
diff --git a/theories/base_logic/lib/own.v b/theories/base_logic/lib/own.v
index ba33ca2f39a57568e0de66691b139b9c8bf4c2c4..02903ae4649a04f6f5ec03074d1db48afaf7a457 100644
--- a/theories/base_logic/lib/own.v
+++ b/theories/base_logic/lib/own.v
@@ -184,7 +184,7 @@ Qed.
 
 Lemma own_update γ a a' : a ~~> a' → own γ a ==∗ own γ a'.
 Proof.
-  intros; rewrite (own_updateP (a' =)); last by apply cmra_update_updateP.
+  intros; rewrite (own_updateP (a' =.)); last by apply cmra_update_updateP.
   by apply bupd_mono, exist_elim=> a''; apply pure_elim_l=> ->.
 Qed.
 Lemma own_update_2 γ a1 a2 a' :
diff --git a/theories/heap_lang/lang.v b/theories/heap_lang/lang.v
index 4a99a3c32799a5b2f569bc6d968ea0ccfcc5d4b8..1e844bc3efea31c26f003133b1f765b9f2a1f6a5 100644
--- a/theories/heap_lang/lang.v
+++ b/theories/heap_lang/lang.v
@@ -657,7 +657,7 @@ Inductive head_step : expr → state → list observation → expr → state →
      p ∉ σ.(used_proph_id) →
      head_step NewProph σ
                []
-               (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ∪) σ)
+               (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ∪.) σ)
                []
   | ResolveS p v e σ w σ' κs ts :
      head_step e σ κs (Val v) σ' ts →
@@ -698,7 +698,7 @@ Qed.
 
 Lemma new_proph_id_fresh σ :
   let p := fresh σ.(used_proph_id) in
-  head_step NewProph σ [] (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ∪) σ) [].
+  head_step NewProph σ [] (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ∪.) σ) [].
 Proof. constructor. apply is_fresh. Qed.
 
 Lemma heap_lang_mixin : EctxiLanguageMixin of_val to_val fill_item head_step.