diff --git a/coq-iris.opam b/coq-iris.opam index b1b16597266ad2f5d0cb41888e0b4286eeb383fd..6c1f4a374559cabfab6c4c4f364231d81c8f8b26 100644 --- a/coq-iris.opam +++ b/coq-iris.opam @@ -14,7 +14,7 @@ iris.prelude, iris.algebra, iris.si_logic, iris.bi, iris.proofmode, iris.base_lo depends: [ "coq" { (>= "8.12" & < "8.14~") | (= "dev") } - "coq-stdpp" { (= "dev.2021-04-08.1.5843163b") | (= "dev") } + "coq-stdpp" { (= "dev.2021-04-20.2.03290b88") | (= "dev") } ] build: ["./make-package" "iris" "-j%{jobs}%"] diff --git a/iris/algebra/big_op.v b/iris/algebra/big_op.v index a56da2ac8c8aee78070c5859a970549cf29407f6..b0f38ffbf7814864f9dc6356c523a4750b417882 100644 --- a/iris/algebra/big_op.v +++ b/iris/algebra/big_op.v @@ -630,13 +630,13 @@ Section gmultiset. ([^o mset] y ∈ X ⊎ Y, f y) ≡ ([^o mset] y ∈ X, f y) `o` [^o mset] y ∈ Y, f y. Proof. by rewrite big_opMS_eq /big_opMS_def gmultiset_elements_disj_union big_opL_app. Qed. - Lemma big_opMS_singleton f x : ([^o mset] y ∈ {[ x ]}, f y) ≡ f x. + Lemma big_opMS_singleton f x : ([^o mset] y ∈ {[+ x +]}, f y) ≡ f x. Proof. intros. by rewrite big_opMS_eq /big_opMS_def gmultiset_elements_singleton /= right_id. Qed. Lemma big_opMS_delete f X x : - x ∈ X → ([^o mset] y ∈ X, f y) ≡ f x `o` [^o mset] y ∈ X ∖ {[ x ]}, f y. + x ∈ X → ([^o mset] y ∈ X, f y) ≡ f x `o` [^o mset] y ∈ X ∖ {[+ x +]}, f y. Proof. intros. rewrite -big_opMS_singleton -big_opMS_disj_union. by rewrite -gmultiset_disj_union_difference'. diff --git a/iris/algebra/gmultiset.v b/iris/algebra/gmultiset.v index e595a307ddaefade23a41194579f84cef5f37042..c7507eefce7dad6ce028739001ba93bddaca57b1 100644 --- a/iris/algebra/gmultiset.v +++ b/iris/algebra/gmultiset.v @@ -86,7 +86,7 @@ Section gmultiset. Qed. Lemma big_opMS_singletons X : - ([^op mset] x ∈ X, {[ x ]}) = X. + ([^op mset] x ∈ X, {[+ x +]}) = X. Proof. induction X as [|x X IH] using gmultiset_ind. - rewrite big_opMS_empty. done. diff --git a/iris/bi/big_op.v b/iris/bi/big_op.v index b7affdfdcde81325d24fbf8f3fbb9c867c562b9b..824da80c279e7c4f5117cfdf297440e51559c222 100644 --- a/iris/bi/big_op.v +++ b/iris/bi/big_op.v @@ -2053,7 +2053,7 @@ Section gmultiset. Proof. apply big_opMS_disj_union. Qed. Lemma big_sepMS_delete Φ X x : - x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊣⊢ Φ x ∗ [∗ mset] y ∈ X ∖ {[ x ]}, Φ y. + x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊣⊢ Φ x ∗ [∗ mset] y ∈ X ∖ {[+ x +]}, Φ y. Proof. apply big_opMS_delete. Qed. Lemma big_sepMS_elem_of Φ X x `{!Absorbing (Φ x)} : @@ -2067,7 +2067,7 @@ Section gmultiset. intros. rewrite big_sepMS_delete //. by apply sep_mono_r, wand_intro_l. Qed. - Lemma big_sepMS_singleton Φ x : ([∗ mset] y ∈ {[ x ]}, Φ y) ⊣⊢ Φ x. + Lemma big_sepMS_singleton Φ x : ([∗ mset] y ∈ {[+ x +]}, Φ y) ⊣⊢ Φ x. Proof. apply big_opMS_singleton. Qed. Lemma big_sepMS_sep Φ Ψ X : @@ -2155,7 +2155,7 @@ Section gmultiset. Φ x ∗ (* we reobtain the bigop for a predicate [Ψ] selected by the user *) ∀ Ψ, - □ (∀ y, ⌜ y ∈ X ∖ {[ x ]} ⌠→ Φ y -∗ Ψ y) -∗ + □ (∀ y, ⌜ y ∈ X ∖ {[+ x +]} ⌠→ Φ y -∗ Ψ y) -∗ Ψ x -∗ [∗ mset] y ∈ X, Ψ y. Proof.