From 739b1be302d086a57341f3a6c67dc01148c86a9d Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Fri, 8 Sep 2023 10:56:55 +0200 Subject: [PATCH] share the invariant assumptions between the two inv paradoxes --- iris/bi/lib/counterexamples.v | 146 +++++++++++----------------------- 1 file changed, 47 insertions(+), 99 deletions(-) diff --git a/iris/bi/lib/counterexamples.v b/iris/bi/lib/counterexamples.v index 3afac3af7..6614ecfb0 100644 --- a/iris/bi/lib/counterexamples.v +++ b/iris/bi/lib/counterexamples.v @@ -110,7 +110,9 @@ Module savedprop. Section savedprop. End savedprop. End savedprop. -(** This proves that we need the ▷ when opening invariants. *) +(** This proves that we need the ▷ when opening invariants. We have two +paradoxes in this section, but they share the general axiomatization of +invariants. *) Module inv. Section inv. Context {PROP : bi} `{!BiAffine PROP}. Implicit Types P : PROP. @@ -133,29 +135,12 @@ Module inv. Section inv. Hypothesis inv_fupd : ∀ i P Q R, (P ∗ Q ⊢ fupd M0 (P ∗ R)) → (inv i P ∗ Q ⊢ fupd M1 R). - (* We have tokens for a little "two-state STS": [start] -> [finish]. - state. [start] also asserts the exact state; it is only ever owned by the - invariant. [finished] is duplicable. *) - (* Posssible implementations of these axioms: - * Using the STS monoid of a two-state STS, where [start] is the - authoritative saying the state is exactly [start], and [finish] - is the "we are at least in state [finish]" typically owned by threads. - * Ex () +_## () - *) - Context (gname : Type). - Context (start finished : gname → PROP). - - Hypothesis sts_alloc : ⊢ fupd M0 (∃ γ, start γ). - Hypotheses start_finish : ∀ γ, start γ ⊢ fupd M0 (finished γ). - - Hypothesis finished_not_start : ∀ γ, start γ ∗ finished γ ⊢ False. - - Hypothesis finished_dup : ∀ γ, finished γ ⊢ finished γ ∗ finished γ. - (** We assume that we cannot update to false. *) Hypothesis consistency : ¬ (⊢ fupd M1 False). - (** Some general lemmas and proof mode compatibility. *) + (** This completes the general assumptions shared by both paradoxes. We set up + some general lemmas and proof mode compatibility before proceeding with + the paradoxes. *) Lemma inv_fupd' i P R : inv i P ∗ (P -∗ fupd M0 (P ∗ fupd M1 R)) ⊢ fupd M1 R. Proof. iIntros "(#HiP & HP)". iApply fupd_fupd. iApply inv_fupd; last first. @@ -194,6 +179,28 @@ Module inv. Section inv. apply fupd_mono. by rewrite -HP -(bi.exist_intro a). Qed. + (** The original paradox, as found in the "Iris from the Ground Up" paper. *) + Section inv1. + (** On top of invariants themselves, we need a particular kind of ghost state: + we have tokens for a little "two-state STS": [start] -> [finish]. + [start] also asserts the exact state; it is only ever owned by the + invariant. [finished] is duplicable. *) + (** Posssible implementations of these axioms: + * Using the STS monoid of a two-state STS, where [start] is the + authoritative saying the state is exactly [start], and [finish] + is the "we are at least in state [finish]" typically owned by threads. + * Ex () +_## () + *) + Context (gname : Type). + Context (start finished : gname → PROP). + + Hypothesis sts_alloc : ⊢ fupd M0 (∃ γ, start γ). + Hypotheses start_finish : ∀ γ, start γ ⊢ fupd M0 (finished γ). + + Hypothesis finished_not_start : ∀ γ, start γ ∗ finished γ ⊢ False. + + Hypothesis finished_dup : ∀ γ, finished γ ⊢ finished γ ∗ finished γ. + (** Now to the actual counterexample. We start with a weird form of saved propositions. *) Definition saved (γ : gname) (P : PROP) : PROP := ∃ i, inv i (start γ ∨ (finished γ ∗ □ P)). @@ -257,41 +264,22 @@ Module inv. Section inv. iPoseProof (saved_NA with "H") as "HN". iApply "HN". iApply saved_A. done. Qed. -End inv. End inv. -(** This is another proof showing that we need the ▷ when opening invariants. -Unlike the two paradoxes above, this proof does not rely on impredicative -quantification -- at least, not directly. Instead it exploits the impredicative -quantification that is implicit in [fupd]. Unlike the previous paradox, -the [finish] token needs to be persistent for this paradox to work. - -This paradox is due to Yusuke Matsushita. *) -Module inv2. Section inv2. - Context {PROP : bi} `{!BiAffine PROP}. - Implicit Types P : PROP. - - (** Assumptions *) - (** We have the update modality (two classes: empty/full mask) *) - Inductive mask := M0 | M1. - Context (fupd : mask → PROP → PROP). - Hypothesis fupd_intro : ∀ E P, P ⊢ fupd E P. - Hypothesis fupd_mono : ∀ E P Q, (P ⊢ Q) → fupd E P ⊢ fupd E Q. - Hypothesis fupd_fupd : ∀ E P, fupd E (fupd E P) ⊢ fupd E P. - Hypothesis fupd_frame_l : ∀ E P Q, P ∗ fupd E Q ⊢ fupd E (P ∗ Q). - Hypothesis fupd_mask_mono : ∀ P, fupd M0 P ⊢ fupd M1 P. - - (** We have invariants *) - Context (name : Type) (inv : name → PROP → PROP). - Global Arguments inv _ _%I. - Hypothesis inv_persistent : ∀ i P, Persistent (inv i P). - Hypothesis inv_alloc : ∀ P, P ⊢ fupd M1 (∃ i, inv i P). - Hypothesis inv_fupd : - ∀ i P Q R, (P ∗ Q ⊢ fupd M0 (P ∗ R)) → (inv i P ∗ Q ⊢ fupd M1 R). - - (* We have tokens for a little "two-state STS": [start] -> [finish]. - state. [start] also asserts the exact state; it is only ever owned by the - invariant. [finished] is persistent. *) - (* Posssible implementations of these axioms: + End inv1. + + (** This is another proof showing that we need the ▷ when opening invariants. + Unlike the two paradoxes above, this proof does not rely on impredicative + quantification -- at least, not directly. Instead it exploits the impredicative + quantification that is implicit in [fupd]. Unlike the previous paradox, + the [finish] token needs to be persistent for this paradox to work. + + This paradox is due to Yusuke Matsushita. *) + Section inv2. + (** On top of invariants themselves, we need a particular kind of ghost state: + we have tokens for a little "two-state STS": [start] -> [finish]. + [start] also asserts the exact state; it is only ever owned by the + invariant. [finished] is persistent. *) + (** Posssible implementations of these axioms: * Using the STS monoid of a two-state STS, where [start] is the authoritative saying the state is exactly [start], and [finish] is the "we are at least in state [finish]" typically owned by threads. @@ -307,48 +295,6 @@ Module inv2. Section inv2. Hypothesis finished_persistent : ∀ γ, Persistent (finished γ). - (** We assume that we cannot update to false. *) - Hypothesis consistency : ¬ (⊢ fupd M1 False). - - (** Some general lemmas and proof mode compatibility. *) - Lemma inv_fupd' i P R : inv i P ∗ (P -∗ fupd M0 (P ∗ fupd M1 R)) ⊢ fupd M1 R. - Proof. - iIntros "(#HiP & HP)". iApply fupd_fupd. iApply inv_fupd; last first. - { iSplit; first done. iExact "HP". } - iIntros "(HP & HPw)". by iApply "HPw". - Qed. - - Global Instance fupd_mono' E : Proper ((⊢) ==> (⊢)) (fupd E). - Proof. intros P Q ?. by apply fupd_mono. Qed. - Global Instance fupd_proper E : Proper ((⊣⊢) ==> (⊣⊢)) (fupd E). - Proof. - intros P Q; rewrite !bi.equiv_entails=> -[??]; split; by apply fupd_mono. - Qed. - - Lemma fupd_frame_r E P Q : fupd E P ∗ Q ⊢ fupd E (P ∗ Q). - Proof. by rewrite comm fupd_frame_l comm. Qed. - - Global Instance elim_fupd_fupd p E P Q : - ElimModal True p false (fupd E P) P (fupd E Q) (fupd E Q). - Proof. - by rewrite /ElimModal bi.intuitionistically_if_elim - fupd_frame_r bi.wand_elim_r fupd_fupd. - Qed. - - Global Instance elim_fupd0_fupd1 p P Q : - ElimModal True p false (fupd M0 P) P (fupd M1 Q) (fupd M1 Q). - Proof. - by rewrite /ElimModal bi.intuitionistically_if_elim - fupd_frame_r bi.wand_elim_r fupd_mask_mono fupd_fupd. - Qed. - - Global Instance exists_split_fupd0 {A} E P (Φ : A → PROP) : - FromExist P Φ → FromExist (fupd E P) (λ a, fupd E (Φ a)). - Proof. - rewrite /FromExist=>HP. apply bi.exist_elim=> a. - apply fupd_mono. by rewrite -HP -(bi.exist_intro a). - Qed. - (** Now to the actual counterexample. *) (** A version of ⊥ behind a persistent update. *) Definition B : PROP := □ fupd M1 False. @@ -393,7 +339,7 @@ Module inv2. Section inv2. Qed. (** Of course, creating the invariant is trivial. *) - Lemma contradiction : False. + Lemma contradiction' : False. Proof using All. apply consistency. iMod sts_alloc as (γ) "Hstart". @@ -401,7 +347,9 @@ Module inv2. Section inv2. { by iLeft. } iDestruct (invariant_contradiction with "HI") as "#>[]". Qed. -End inv2. End inv2. + + End inv2. +End inv. End inv. (** This proves that if we have linear impredicative invariants, we can still drop arbitrary resources (i.e., we can "defeat" linearity). -- GitLab