diff --git a/CHANGELOG.md b/CHANGELOG.md index 2482b3d14e3c91f32e1e6ed1f85b896dc86fbd95..67524c9949b468e53883e5d15d4a0ad5a2661e09 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -155,6 +155,10 @@ Coq 8.13 is no longer supported. [proofmode/base.v](iris/proofmode/base.v) for documentation on how to use these tactics to convert your own fixed arity tactics to an n-ary variant. +* Improve the `IntoPure` instance for internal equality. Whenever possible, + `a ≡ b` will now be simplified to `a = b` upon introduction into the pure + context. This will break but simplify some existing proofs: + `iIntros (H%leibniz_equiv)` should be replaced by `iIntros (H)`. (by Ike Mulder) **Changes in `base_logic`:** diff --git a/iris/proofmode/class_instances_internal_eq.v b/iris/proofmode/class_instances_internal_eq.v index af546a0daf7e8e7c6a75da66daffe8d61dae0354..b44a78702792432e1c5bc2cf470bc710b754de9f 100644 --- a/iris/proofmode/class_instances_internal_eq.v +++ b/iris/proofmode/class_instances_internal_eq.v @@ -7,13 +7,32 @@ Section class_instances_internal_eq. Context `{!BiInternalEq PROP}. Implicit Types P Q R : PROP. +(* When a user calls [iPureIntro] on [⊢ a ≡ b], the following instance turns + turns this into the pure goal [a ≡ b : Prop]. + If [a, b : A] with [LeibnizEquiv A], another candidate would be [a = b]. While + this does not lead to information loss, [=] is harder to prove than [≡]. We thus + leave such simplifications to the user (e.g. they can call [fold_leibniz]). *) Global Instance from_pure_internal_eq {A : ofe} (a b : A) : @FromPure PROP false (a ≡ b) (a ≡ b). Proof. by rewrite /FromPure pure_internal_eq. Qed. -Global Instance into_pure_eq {A : ofe} (a b : A) : - Discrete a → @IntoPure PROP (a ≡ b) (a ≡ b). -Proof. intros. by rewrite /IntoPure discrete_eq. Qed. +(* On the other hand, when a user calls [iIntros "%H"] on [⊢ (a ≡ b) -∗ P], + it is most convenient if [H] is as strong as possible---meaning, the user would + rather get [H : a = b] than [H : a ≡ b]. This is only possible if the + equivalence on [A] implies Leibniz equality (i.e., we have [LeibnizEquiv A]). + If the equivalence on [A] does not imply Leibniz equality, we cannot simplify + [a ≡ b] any further. + The following instance implements above logic, while avoiding a double search + for [Discrete a]. *) +Global Instance into_pure_eq {A : ofe} (a b : A) (P : Prop) : + Discrete a → + TCOr (TCAnd (LeibnizEquiv A) (TCEq P (a = b))) + (TCEq P (a ≡ b)) → + @IntoPure PROP (a ≡ b) P. +Proof. + move=> ? [[? ->]|->]; rewrite /IntoPure discrete_eq; last done. + by rewrite leibniz_equiv_iff. +Qed. Global Instance from_modal_Next {A : ofe} (x y : A) : FromModal (PROP1:=PROP) (PROP2:=PROP) True (modality_laterN 1) diff --git a/tests/proofmode.v b/tests/proofmode.v index 0dcc19295b472999fea4d68eb59f2dff93fc6a0b..e9f7005e0db6e44cce68360668dd5f0532003135 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -1003,6 +1003,36 @@ Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) : x1 = x2 → (⌜ x2 = x3 ⌠∗ ⌜ x3 ≡ x4 ⌠∗ P) -∗ ⌜ x1 = x4 ⌠∗ P. Proof. iIntros (?) "(-> & -> & $)"; auto. Qed. +Lemma test_iIntros_leibniz_equiv `{!BiInternalEq PROP} {A : ofe} (x y : A) : + Discrete x → LeibnizEquiv A → + x ≡ y ⊢@{PROP} ⌜x = yâŒ. +Proof. + intros ??. + iIntros (->). (* test that the [IntoPure] instance converts [≡] into [=] *) + done. +Qed. + +Lemma test_iIntros_leibniz_equiv_prod `{!BiInternalEq PROP} + {A B : ofe} (a1 a2 : A) (b1 b2 : B) : + Discrete a1 → Discrete b1 → LeibnizEquiv A → LeibnizEquiv B → + (a1, b1) ≡ (a2, b2) ⊢@{PROP} ⌜a1 = a2âŒ. +Proof. + intros ????. + iIntros ([-> _]%pair_eq). + (* another test that the [IntoPure] instance converts [≡] into [=], also under + combinators *) + done. +Qed. + +Lemma test_iPureIntro_leibniz_equiv `{!BiInternalEq PROP} + {A : ofe} `{!LeibnizEquiv A} (x y : A) : + (x ≡ y) → ⊢@{PROP} x ≡ y. +Proof. + intros Heq. iPureIntro. + (* test that the [FromPure] instance does _not_ convert [≡] into [=] *) + exact Heq. +Qed. + Lemma test_iDestruct_rewrite_not_consume P (x1 x2 : nat) : (P -∗ ⌜ x1 = x2 âŒ) → P -∗ ⌜ x1 = x2 ⌠∗ P.