diff --git a/theories/base_logic/lib/invariants.v b/theories/base_logic/lib/invariants.v index a1af8026d410b62d13f0ff9232f5ff606fd0f020..25bf0a9a6beb394ed42b8c99abcaeec284ec46bc 100644 --- a/theories/base_logic/lib/invariants.v +++ b/theories/base_logic/lib/invariants.v @@ -165,22 +165,20 @@ Section inv. iIntros "!> {$HP} HP". iApply "Hclose"; auto. Qed. - Lemma inv_sep_l N P Q : inv N (P ∗ Q) -∗ inv N P. + Lemma inv_split_l N P Q : inv N (P ∗ Q) -∗ inv N P. Proof. iIntros "#HI". iApply inv_alter; eauto. iIntros "!> !> [$ $] $". Qed. - - Lemma inv_sep_r N P Q : inv N (P ∗ Q) -∗ inv N Q. + Lemma inv_split_r N P Q : inv N (P ∗ Q) -∗ inv N Q. Proof. - rewrite (comm _ P Q). eapply inv_sep_l. + rewrite (comm _ P Q). eapply inv_split_l. Qed. - - Lemma inv_sep N P Q : inv N (P ∗ Q) -∗ inv N P ∗ inv N Q. + Lemma inv_split N P Q : inv N (P ∗ Q) -∗ inv N P ∗ inv N Q. Proof. iIntros "#H". - iPoseProof (inv_sep_l with "H") as "$". - iPoseProof (inv_sep_r with "H") as "$". + iPoseProof (inv_split_l with "H") as "$". + iPoseProof (inv_split_r with "H") as "$". Qed. End inv.