From 6bf5566ff413327d945b02f8068ca8ad794f0ad2 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Sat, 13 Mar 2021 11:27:36 +0100 Subject: [PATCH] Replace some uses of `set_solver` by `multiset_solver`. --- coq-iris.opam | 2 +- iris/algebra/cmra_big_op.v | 4 ++-- iris/bi/big_op.v | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/coq-iris.opam b/coq-iris.opam index e77d9bb39..7e2db99e9 100644 --- a/coq-iris.opam +++ b/coq-iris.opam @@ -14,7 +14,7 @@ iris.prelude, iris.algebra, iris.si_logic, iris.bi, iris.proofmode, iris.base_lo depends: [ "coq" { (>= "8.11" & < "8.14~") | (= "dev") } - "coq-stdpp" { (= "dev.2021-03-11.0.6d001c9d") | (= "dev") } + "coq-stdpp" { (= "dev.2021-03-13.0.7fdaea0f") | (= "dev") } ] build: ["./make-package" "iris" "-j%{jobs}%"] diff --git a/iris/algebra/cmra_big_op.v b/iris/algebra/cmra_big_op.v index 9f105e214..71236bbaa 100644 --- a/iris/algebra/cmra_big_op.v +++ b/iris/algebra/cmra_big_op.v @@ -30,7 +30,7 @@ Lemma big_opMS_None {M : cmra} `{Countable A} (f : A → option M) X : ([^op mset] x ∈ X, f x) = None ↔ ∀ x, x ∈ X → f x = None. Proof. induction X as [|x X IH] using gmultiset_ind. - { rewrite big_opMS_empty. set_solver. } + { rewrite big_opMS_empty. multiset_solver. } rewrite -equiv_None big_opMS_disj_union big_opMS_singleton equiv_None op_None IH. - set_solver. + multiset_solver. Qed. diff --git a/iris/bi/big_op.v b/iris/bi/big_op.v index d0ed67236..b2c883411 100644 --- a/iris/bi/big_op.v +++ b/iris/bi/big_op.v @@ -2103,11 +2103,11 @@ Section gmultiset. { by rewrite (affine (□ _)%I) big_sepMS_empty. } rewrite intuitionistically_sep_dup big_sepMS_disj_union. rewrite big_sepMS_singleton. f_equiv. - - rewrite (forall_elim x) pure_True ?True_impl; last set_solver. + - rewrite (forall_elim x) pure_True ?True_impl; last multiset_solver. by rewrite intuitionistically_elim. - rewrite -IH. f_equiv. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. - by rewrite pure_True ?True_impl; last set_solver. + by rewrite pure_True ?True_impl; last multiset_solver. Qed. Lemma big_sepMS_forall `{BiAffine PROP} Φ X : -- GitLab