diff --git a/tests/proofmode.ref b/tests/proofmode.ref index 7646632b32b5c0f991cb1ad82c10fe7d753e9353..cee756d7f56d5af9e29c6bb9b86337580aa921f9 100644 --- a/tests/proofmode.ref +++ b/tests/proofmode.ref @@ -954,7 +954,7 @@ The command has indeed failed with message: Tactic failure: sel_pat.parse: the term m is expected to be a selection pattern (usually a string), but has unexpected type nat. -"test_iIntros_let_fail" +"test_iIntros_let_entails_fail" : string The command has indeed failed with message: Tactic failure: iStartProof: goal is a `let`, use `simpl`, diff --git a/tests/proofmode.v b/tests/proofmode.v index 91f4fa3fc63f5ae6b48934459234c0dc7192e9ad..b235b26ebd17e244dc564fc274380ab636a432a3 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -878,7 +878,7 @@ Proof. iIntros "?". done. Qed. -Lemma test_iPoseProof_let P Q : +Lemma test_iPoseProof_let_entails P Q : (let R := True%I in R ∗ P ⊢ Q) → P ⊢ Q. Proof. @@ -886,14 +886,14 @@ Proof. iPoseProof (help with "[$HP]") as "?". done. Qed. Lemma test_iPoseProof_let_wand P Q : - (let R := True%I in R ∗ P ⊢ Q) → + (let R := True%I in R ∗ P -∗ Q) → P -∗ Q. Proof. iIntros (help) "HP". iPoseProof (help with "[$HP]") as "?". done. Qed. -Lemma test_iPoseProof_let_in_string P Q : +Lemma test_iPoseProof_let_entails_pm_intro_pat P Q : (let R := True%I in R ∗ P ⊢ Q) → P ⊢ Q. Proof. @@ -901,21 +901,21 @@ Proof. iPoseProof (help with "[$HP]") as "?". done. Qed. -Lemma test_iIntros_let P : - ∀ Q, let R := emp%I in P -∗ R -∗ Q -∗ P ∗ Q. +Lemma test_iIntros_let_entails P : + ∀ Q, let R := emp%I in P ⊢ R -∗ Q -∗ P ∗ Q. Proof. iIntros (Q R) "$ _ $". Qed. Lemma test_iIntros_let_wand P : - ∀ Q, let R := emp%I in P ⊢ R -∗ Q -∗ P ∗ Q. + ∀ Q, let R := emp%I in P -∗ R -∗ Q -∗ P ∗ Q. Proof. iIntros (Q R) "$ _ $". Qed. -Lemma lemma_for_test_apply_below_let (Φ : nat → PROP) : +Lemma lemma_for_test_apply_entails_below_let (Φ : nat → PROP) : let Q := Φ 5 in Q ⊢ Q. Proof. iIntros (?) "?". done. Qed. -Lemma test_apply_below_let (Φ : nat → PROP) : +Lemma test_apply_entails_below_let (Φ : nat → PROP) : Φ 5 -∗ Φ 5. -Proof. iIntros "?". iApply lemma_for_test_apply_below_let. done. Qed. +Proof. iIntros "?". iApply lemma_for_test_apply_entails_below_let. done. Qed. Lemma lemma_for_test_apply_wand_below_let (Φ : nat → PROP) : let Q := Φ 5 in @@ -1791,8 +1791,8 @@ Proof. Fail iInduction n as [|n] "IH" forall m. Abort. -Check "test_iIntros_let_fail". -Lemma test_iIntros_let_fail P : +Check "test_iIntros_let_entails_fail". +Lemma test_iIntros_let_entails_fail P : let Q := (P ∗ P)%I in Q ⊢ Q. Proof. @@ -1802,7 +1802,7 @@ Abort. Check "test_iIntros_let_wand_fail". Lemma test_iIntros_let_wand_fail P : let Q := (P ∗ P)%I in - Q ⊢ Q. + Q -∗ Q. Proof. Fail iIntros "Q". Abort.