diff --git a/opam b/opam index 1fc1d3a78c856b3ca96cecf203a5030ef1c5cbcc..a8ce3bbe3d34bbb83bf5a48ecfccb955fe6361b6 100644 --- a/opam +++ b/opam @@ -12,5 +12,5 @@ install: [make "install"] remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"] depends: [ "coq" { (= "8.7.2") | (= "8.8.2") | (>= "8.9" & < "8.11~") | (= "dev") } - "coq-stdpp" { (= "dev.2019-08-24.1.adfc24d2") | (= "dev") } + "coq-stdpp" { (= "dev.2019-08-26.0.1ae85171") | (= "dev") } ] diff --git a/theories/algebra/cmra.v b/theories/algebra/cmra.v index 714b01afb9e2cf23298daa6c8a6456a6e3fd2839..635bb926744c54f3872d50f0857699cd07e55e0d 100644 --- a/theories/algebra/cmra.v +++ b/theories/algebra/cmra.v @@ -971,6 +971,24 @@ Section unit. Proof. by constructor. Qed. End unit. +(** ** CMRA for the empty type *) +Section empty. + Instance Empty_set_valid : Valid Empty_set := λ x, False. + Instance Empty_set_validN : ValidN Empty_set := λ n x, False. + Instance Empty_set_pcore : PCore Empty_set := λ x, Some x. + Instance Empty_set_op : Op Empty_set := λ x y, x. + Lemma Empty_set_cmra_mixin : CmraMixin Empty_set. + Proof. apply discrete_cmra_mixin, ra_total_mixin; by (intros [] || done). Qed. + Canonical Structure Empty_setR : cmraT := CmraT Empty_set Empty_set_cmra_mixin. + + Global Instance Empty_set_cmra_discrete : CmraDiscrete Empty_setR. + Proof. done. Qed. + Global Instance Empty_set_core_id (x : Empty_set) : CoreId x. + Proof. by constructor. Qed. + Global Instance Empty_set_cancelable (x : Empty_set) : Cancelable x. + Proof. by constructor. Qed. +End empty. + (** ** Natural numbers *) Section nat. Instance nat_valid : Valid nat := λ x, True. diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 1f53c8d72bdc098e3d6bdc53b44b4ae18097793f..e8b30026792340750f5dbd320dd3e042b0569643 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -616,6 +616,20 @@ Section unit. Proof. done. Qed. End unit. +(** empty *) +Section empty. + Instance Empty_set_dist : Dist Empty_set := λ _ _ _, True. + Definition Empty_set_ofe_mixin : OfeMixin Empty_set. + Proof. by repeat split; try exists 0. Qed. + Canonical Structure Empty_setO : ofeT := OfeT Empty_set Empty_set_ofe_mixin. + + Global Program Instance Empty_set_cofe : Cofe Empty_setO := { compl x := x 0 }. + Next Obligation. by repeat split; try exists 0. Qed. + + Global Instance Empty_set_ofe_discrete : OfeDiscrete Empty_setO. + Proof. done. Qed. +End empty. + (** Product *) Section product. Context {A B : ofeT}.