diff --git a/iris/si_logic/siprop.v b/iris/si_logic/siprop.v index 5361f62d2bca051c28b083c9311cafaf5fcbd1b2..dc7fef0a597200e7e29046dc63e1407dc98dc5f4 100644 --- a/iris/si_logic/siprop.v +++ b/iris/si_logic/siprop.v @@ -13,9 +13,7 @@ Local Coercion siProp_holds : siProp >-> Funclass. Global Arguments siProp_holds : simpl never. Add Printing Constructor siProp. -Declare Scope siProp_scope. -Delimit Scope siProp_scope with SI. -Bind Scope siProp_scope with siProp. +Bind Scope bi_scope with siProp. Section cofe. Inductive siProp_equiv' (P Q : siProp) : Prop := @@ -131,16 +129,18 @@ Section primitive. Local Arguments siProp_holds !_ _ /. Notation "P ⊢ Q" := (siProp_entails P Q). -Notation "'True'" := (siProp_pure True) : siProp_scope. -Notation "'False'" := (siProp_pure False) : siProp_scope. -Notation "'⌜' φ 'âŒ'" := (siProp_pure φ%type%stdpp) : siProp_scope. -Infix "∧" := siProp_and : siProp_scope. -Infix "∨" := siProp_or : siProp_scope. -Infix "→" := siProp_impl : siProp_scope. -Notation "∀ x .. y , P" := (siProp_forall (λ x, .. (siProp_forall (λ y, P%SI)) ..)) : siProp_scope. -Notation "∃ x .. y , P" := (siProp_exist (λ x, .. (siProp_exist (λ y, P%SI)) ..)) : siProp_scope. -Notation "x ≡ y" := (siProp_internal_eq x y) : siProp_scope. -Notation "â–· P" := (siProp_later P) (at level 20, right associativity) : siProp_scope. +Notation "'True'" := (siProp_pure True) : bi_scope. +Notation "'False'" := (siProp_pure False) : bi_scope. +Notation "'⌜' φ 'âŒ'" := (siProp_pure φ%type%stdpp) : bi_scope. +Infix "∧" := siProp_and : bi_scope. +Infix "∨" := siProp_or : bi_scope. +Infix "→" := siProp_impl : bi_scope. +Notation "∀ x .. y , P" := + (siProp_forall (λ x, .. (siProp_forall (λ y, P%I)) ..)) : bi_scope. +Notation "∃ x .. y , P" := + (siProp_exist (λ x, .. (siProp_exist (λ y, P%I)) ..)) : bi_scope. +Notation "x ≡ y" := (siProp_internal_eq x y) : bi_scope. +Notation "â–· P" := (siProp_later P) : bi_scope. (** Below there follow the primitive laws for [siProp]. There are no derived laws in this file. *)