diff --git a/theories/base_logic/upred.v b/theories/base_logic/upred.v index 845eb5ba555120717b3a53c4aa8ddb394b53b432..874fed496af10bf65fd4b8334412805093ba544e 100644 --- a/theories/base_logic/upred.v +++ b/theories/base_logic/upred.v @@ -631,9 +631,7 @@ Proof. by unseal. Qed. Lemma prop_ext_2 P Q : ■((P -∗ Q) ∧ (Q -∗ P)) ⊢ P ≡ Q. Proof. - unseal; split=> n x ? /= HPQ. split=> n' x' ??. - move: HPQ=> [] /(_ n' x'); rewrite !left_id=> ?. - move=> /(_ n' x'); rewrite !left_id=> ?. naive_solver. + unseal; split=> n x ? /=. setoid_rewrite (left_id ε op). split; naive_solver. Qed. (* The following two laws are very similar, and indeed they hold not just for □