diff --git a/_CoqProject b/_CoqProject index cf13c3743775582b3232e6412a879e7c1f08fbf2..f7238a768c1d01a77f6d28dc89ecc2fa5a11f0d7 100644 --- a/_CoqProject +++ b/_CoqProject @@ -20,8 +20,6 @@ -arg -w -arg -future-coercion-class-field # Some warnings exist only on some Coq versions -arg -w -arg -unknown-warning -# Since we still support Coq 8.15, we cannot yet deal with these deprecations. --arg -w -arg -deprecated-since-8.18 iris/prelude/options.v iris/prelude/prelude.v diff --git a/iris/algebra/ofe.v b/iris/algebra/ofe.v index 82d6cf0796e48cb9a3905e986cd4a5ba5dc1bd5c..2c0a4098fd8c66bc316f2b3360650c49644ef4df 100644 --- a/iris/algebra/ofe.v +++ b/iris/algebra/ofe.v @@ -1581,7 +1581,7 @@ Section iso_cofe_subtype. Context {A B : ofe} `{Cofe A} (P : A → Prop) (f : ∀ x, P x → B) (g : B → A). Context (g_dist : ∀ n y1 y2, y1 ≡{n}≡ y2 ↔ g y1 ≡{n}≡ g y2). Let Hgne : NonExpansive g. - Proof. intros n y1 y2. apply g_dist. Qed. + Proof. intros n y1 y2. apply g_dist. Defined. Local Existing Instance Hgne. Context (gf : ∀ x Hx, g (f x Hx) ≡ x). Context (Hlimit : ∀ c : chain B, P (compl (chain_map g c))). diff --git a/iris/bi/lib/fixpoint.v b/iris/bi/lib/fixpoint.v index 5d7196da856379911205639f543fa459dbdf057c..d9bccd4ef1b876640185f8f058c1b8e06ab50891 100644 --- a/iris/bi/lib/fixpoint.v +++ b/iris/bi/lib/fixpoint.v @@ -149,14 +149,14 @@ induction principles: Section least_ind. Context {PROP : bi} {A : ofe} (F : (A → PROP) → (A → PROP)) `{!BiMonoPred F}. - Let wf_pred_mono `{!NonExpansive Φ} : + Local Lemma Private_wf_pred_mono `{!NonExpansive Φ} : BiMonoPred (λ (Ψ : A → PROP) (a : A), Φ a ∧ F Ψ a)%I. Proof using Type*. split; last solve_proper. intros Ψ Ψ' Hne Hne'. iIntros "#Mon" (x) "Ha". iSplit; first by iDestruct "Ha" as "[$ _]". iDestruct "Ha" as "[_ Hr]". iApply (bi_mono_pred with "[] Hr"). by iModIntro. Qed. - Local Existing Instance wf_pred_mono. + Local Existing Instance Private_wf_pred_mono. Lemma least_fixpoint_ind_wf (Φ : A → PROP) `{!NonExpansive Φ} : □ (∀ y, F (bi_least_fixpoint (λ Ψ a, Φ a ∧ F Ψ a)) y -∗ Φ y) -∗ @@ -304,13 +304,14 @@ again. *) Section greatest_coind. Context {PROP : bi} {A : ofe} (F : (A → PROP) → (A → PROP)) `{!BiMonoPred F}. - Let paco_mono `{!NonExpansive Φ} : BiMonoPred (λ (Ψ : A → PROP) (a : A), Φ a ∨ F Ψ a)%I. + Local Lemma Private_paco_mono `{!NonExpansive Φ} : + BiMonoPred (λ (Ψ : A → PROP) (a : A), Φ a ∨ F Ψ a)%I. Proof using Type*. split; last solve_proper. intros Ψ Ψ' Hne Hne'. iIntros "#Mon" (x) "[H1|H2]"; first by iLeft. iRight. iApply (bi_mono_pred with "[] H2"). by iModIntro. Qed. - Local Existing Instance paco_mono. + Local Existing Instance Private_paco_mono. Lemma greatest_fixpoint_paco (Φ : A → PROP) `{!NonExpansive Φ} : □ (∀ y, Φ y -∗ F (bi_greatest_fixpoint (λ Ψ a, Φ a ∨ F Ψ a)) y) -∗ diff --git a/iris/bi/monpred.v b/iris/bi/monpred.v index 2272e36eed5fd0244edaef65342110db98720364..956586906f448efea5aa41b32919c7ae371967cf 100644 --- a/iris/bi/monpred.v +++ b/iris/bi/monpred.v @@ -53,10 +53,10 @@ Section cofe. section by using Let. *) Let monPred_sig_equiv: ∀ P Q, P ≡ Q ↔ monPred_sig P ≡ monPred_sig Q. - Proof. by split; [intros []|]. Qed. + Proof. by split; [intros []|]. Defined. Let monPred_sig_dist: ∀ n, ∀ P Q : monPred, P ≡{n}≡ Q ↔ monPred_sig P ≡{n}≡ monPred_sig Q. - Proof. by split; [intros []|]. Qed. + Proof. by split; [intros []|]. Defined. Definition monPred_ofe_mixin : OfeMixin monPred. Proof.