diff --git a/theories/heap_lang/adequacy.v b/theories/heap_lang/adequacy.v index 72d5e833b88bf20acbbfd58f1eef6a2defa9c8c0..d712d79fd58e028a585de30a5d48338604ee6ada 100644 --- a/theories/heap_lang/adequacy.v +++ b/theories/heap_lang/adequacy.v @@ -14,9 +14,9 @@ Definition heapΣ : gFunctors := #[invΣ; gen_heapΣ loc val]. Instance subG_heapPreG {Σ} : subG heapΣ Σ → heapPreG Σ. Proof. solve_inG. Qed. -Definition heap_adequacy Σ `{heapPreG Σ} p e σ φ : - (∀ `{heapG Σ}, WP e @ p; ⊤ {{ v, ⌜φ v⌠}}%I) → - adequate p e σ φ. +Definition heap_adequacy Σ `{heapPreG Σ} s e σ φ : + (∀ `{heapG Σ}, WP e @ s; ⊤ {{ v, ⌜φ v⌠}}%I) → + adequate s e σ φ. Proof. intros Hwp; eapply (wp_adequacy _ _); iIntros (?) "". iMod (own_alloc (â— to_gen_heap σ)) as (γ) "Hh". diff --git a/theories/heap_lang/lifting.v b/theories/heap_lang/lifting.v index a8c487e7c7678c3c19a09077fdc4c23c2ceafb02..6061d0eb65a88f0d67eda52f20055180793e2d66 100644 --- a/theories/heap_lang/lifting.v +++ b/theories/heap_lang/lifting.v @@ -62,18 +62,18 @@ Implicit Types efs : list expr. Implicit Types σ : state. (** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *) -Lemma wp_bind {p E e} K Φ : - WP e @ p; E {{ v, WP fill K (of_val v) @ p; E {{ Φ }} }} ⊢ WP fill K e @ p; E {{ Φ }}. +Lemma wp_bind {s E e} K Φ : + WP e @ s; E {{ v, WP fill K (of_val v) @ s; E {{ Φ }} }} ⊢ WP fill K e @ s; E {{ Φ }}. Proof. exact: wp_ectx_bind. Qed. -Lemma wp_bindi {p E e} Ki Φ : - WP e @ p; E {{ v, WP fill_item Ki (of_val v) @ p; E {{ Φ }} }} ⊢ - WP fill_item Ki e @ p; E {{ Φ }}. +Lemma wp_bindi {s E e} Ki Φ : + WP e @ s; E {{ v, WP fill_item Ki (of_val v) @ s; E {{ Φ }} }} ⊢ + WP fill_item Ki e @ s; E {{ Φ }}. Proof. exact: weakestpre.wp_bind. Qed. (** Base axioms for core primitives of the language: Stateless reductions *) -Lemma wp_fork p E e Φ : - â–· Φ (LitV LitUnit) ∗ â–· WP e @ p; ⊤ {{ _, True }} ⊢ WP Fork e @ p; E {{ Φ }}. +Lemma wp_fork s E e Φ : + â–· Φ (LitV LitUnit) ∗ â–· WP e @ s; ⊤ {{ _, True }} ⊢ WP Fork e @ s; E {{ Φ }}. Proof. rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto. - by rewrite -step_fupd_intro // later_sep -(wp_value _ _ _ (Lit _)) // right_id. @@ -132,9 +132,9 @@ Global Instance pure_case_inr e0 v e1 e2 `{!IntoVal e0 v} : Proof. solve_pure_exec. Qed. (** Heap *) -Lemma wp_alloc p E e v : +Lemma wp_alloc s E e v : IntoVal e v → - {{{ True }}} Alloc e @ p; E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. + {{{ True }}} Alloc e @ s; E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (<-%of_to_val Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>"; iSplit; first by auto. @@ -143,8 +143,8 @@ Proof. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. -Lemma wp_load p E l q v : - {{{ â–· l ↦{q} v }}} Load (Lit (LitLoc l)) @ p; E {{{ RET v; l ↦{q} v }}}. +Lemma wp_load s E l q v : + {{{ â–· l ↦{q} v }}} Load (Lit (LitLoc l)) @ s; E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. @@ -153,9 +153,9 @@ Proof. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. -Lemma wp_store p E l v' e v : +Lemma wp_store s E l v' e v : IntoVal e v → - {{{ â–· l ↦ v' }}} Store (Lit (LitLoc l)) e @ p; E {{{ RET LitV LitUnit; l ↦ v }}}. + {{{ â–· l ↦ v' }}} Store (Lit (LitLoc l)) e @ s; E {{{ RET LitV LitUnit; l ↦ v }}}. Proof. iIntros (<-%of_to_val Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. @@ -165,9 +165,9 @@ Proof. iModIntro. iSplit=>//. by iApply "HΦ". Qed. -Lemma wp_cas_fail p E l q v' e1 v1 e2 : +Lemma wp_cas_fail s E l q v' e1 v1 e2 : IntoVal e1 v1 → AsVal e2 → v' ≠v1 → - {{{ â–· l ↦{q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ p; E + {{{ â–· l ↦{q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E {{{ RET LitV (LitBool false); l ↦{q} v' }}}. Proof. iIntros (<-%of_to_val [v2 <-%of_to_val] ? Φ) ">Hl HΦ". @@ -177,9 +177,9 @@ Proof. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. -Lemma wp_cas_suc p E l e1 v1 e2 v2 : +Lemma wp_cas_suc s E l e1 v1 e2 v2 : IntoVal e1 v1 → IntoVal e2 v2 → - {{{ â–· l ↦ v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ p; E + {{{ â–· l ↦ v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E {{{ RET LitV (LitBool true); l ↦ v2 }}}. Proof. iIntros (<-%of_to_val <-%of_to_val Φ) ">Hl HΦ". diff --git a/theories/heap_lang/proofmode.v b/theories/heap_lang/proofmode.v index c5d971d807cc8e8b3628966efe7175d5fd0682dd..0f95f3b9f44874d4a0052b39a848528bbda5d076 100644 --- a/theories/heap_lang/proofmode.v +++ b/theories/heap_lang/proofmode.v @@ -5,21 +5,21 @@ From iris.heap_lang Require Export tactics lifting. Set Default Proof Using "Type". Import uPred. -Lemma tac_wp_pure `{heapG Σ} K Δ Δ' p E e1 e2 φ Φ : +Lemma tac_wp_pure `{heapG Σ} K Δ Δ' s E e1 e2 φ Φ : PureExec φ e1 e2 → φ → IntoLaterNEnvs 1 Δ Δ' → - envs_entails Δ' (WP fill K e2 @ p; E {{ Φ }}) → - envs_entails Δ (WP fill K e1 @ p; E {{ Φ }}). + envs_entails Δ' (WP fill K e2 @ s; E {{ Φ }}) → + envs_entails Δ (WP fill K e1 @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ??? HΔ'. rewrite into_laterN_env_sound /=. rewrite -lifting.wp_bind HΔ' -wp_pure_step_later //. by rewrite -ectx_lifting.wp_ectx_bind_inv. Qed. -Lemma tac_wp_value `{heapG Σ} Δ p E Φ e v : +Lemma tac_wp_value `{heapG Σ} Δ s E Φ e v : IntoVal e v → - envs_entails Δ (Φ v) → envs_entails Δ (WP e @ p; E {{ Φ }}). + envs_entails Δ (Φ v) → envs_entails Δ (WP e @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ? ->. by apply wp_value. Qed. Ltac wp_value_head := eapply tac_wp_value; [apply _|lazy beta]. @@ -27,7 +27,7 @@ Ltac wp_value_head := eapply tac_wp_value; [apply _|lazy beta]. Tactic Notation "wp_pure" open_constr(efoc) := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => unify e' efoc; eapply (tac_wp_pure K); [simpl; apply _ (* PureExec *) @@ -52,9 +52,9 @@ Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _). Tactic Notation "wp_case" := wp_pure (Case _ _ _). Tactic Notation "wp_match" := wp_case; wp_let. -Lemma tac_wp_bind `{heapG Σ} K Δ p E Φ e : - envs_entails Δ (WP e @ p; E {{ v, WP fill K (of_val v) @ p; E {{ Φ }} }})%I → - envs_entails Δ (WP fill K e @ p; E {{ Φ }}). +Lemma tac_wp_bind `{heapG Σ} K Δ s E Φ e : + envs_entails Δ (WP e @ s; E {{ v, WP fill K (of_val v) @ s; E {{ Φ }} }})%I → + envs_entails Δ (WP fill K e @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ->. by apply wp_bind. Qed. Ltac wp_bind_core K := @@ -66,7 +66,7 @@ Ltac wp_bind_core K := Tactic Notation "wp_bind" open_constr(efoc) := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K) || fail "wp_bind: cannot find" efoc "in" e | _ => fail "wp_bind: not a 'wp'" @@ -79,13 +79,13 @@ Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types Δ : envs (iResUR Σ). -Lemma tac_wp_alloc Δ Δ' p E j K e v Φ : +Lemma tac_wp_alloc Δ Δ' s E j K e v Φ : IntoVal e v → IntoLaterNEnvs 1 Δ Δ' → (∀ l, ∃ Δ'', envs_app false (Esnoc Enil j (l ↦ v)) Δ' = Some Δ'' ∧ - envs_entails Δ'' (WP fill K (Lit (LitLoc l)) @ p; E {{ Φ }})) → - envs_entails Δ (WP fill K (Alloc e) @ p; E {{ Φ }}). + envs_entails Δ'' (WP fill K (Lit (LitLoc l)) @ s; E {{ Φ }})) → + envs_entails Δ (WP fill K (Alloc e) @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ?? HΔ. rewrite -wp_bind. eapply wand_apply; first exact: wp_alloc. @@ -94,11 +94,11 @@ Proof. by rewrite right_id HΔ'. Qed. -Lemma tac_wp_load Δ Δ' p E i K l q v Φ : +Lemma tac_wp_load Δ Δ' s E i K l q v Φ : IntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦{q} v)%I → - envs_entails Δ' (WP fill K (of_val v) @ p; E {{ Φ }}) → - envs_entails Δ (WP fill K (Load (Lit (LitLoc l))) @ p; E {{ Φ }}). + envs_entails Δ' (WP fill K (of_val v) @ s; E {{ Φ }}) → + envs_entails Δ (WP fill K (Load (Lit (LitLoc l))) @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ???. rewrite -wp_bind. eapply wand_apply; first exact: wp_load. @@ -106,13 +106,13 @@ Proof. by apply later_mono, sep_mono_r, wand_mono. Qed. -Lemma tac_wp_store Δ Δ' Δ'' p E i K l v e v' Φ : +Lemma tac_wp_store Δ Δ' Δ'' s E i K l v e v' Φ : IntoVal e v' → IntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' = Some Δ'' → - envs_entails Δ'' (WP fill K (Lit LitUnit) @ p; E {{ Φ }}) → - envs_entails Δ (WP fill K (Store (Lit (LitLoc l)) e) @ p; E {{ Φ }}). + envs_entails Δ'' (WP fill K (Lit LitUnit) @ s; E {{ Φ }}) → + envs_entails Δ (WP fill K (Store (Lit (LitLoc l)) e) @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ?????. rewrite -wp_bind. eapply wand_apply; first by eapply wp_store. @@ -120,12 +120,12 @@ Proof. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. -Lemma tac_wp_cas_fail Δ Δ' p E i K l q v e1 v1 e2 Φ : +Lemma tac_wp_cas_fail Δ Δ' s E i K l q v e1 v1 e2 Φ : IntoVal e1 v1 → AsVal e2 → IntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦{q} v)%I → v ≠v1 → - envs_entails Δ' (WP fill K (Lit (LitBool false)) @ p; E {{ Φ }}) → - envs_entails Δ (WP fill K (CAS (Lit (LitLoc l)) e1 e2) @ p; E {{ Φ }}). + envs_entails Δ' (WP fill K (Lit (LitBool false)) @ s; E {{ Φ }}) → + envs_entails Δ (WP fill K (CAS (Lit (LitLoc l)) e1 e2) @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ??????. rewrite -wp_bind. eapply wand_apply; first exact: wp_cas_fail. @@ -133,13 +133,13 @@ Proof. by apply later_mono, sep_mono_r, wand_mono. Qed. -Lemma tac_wp_cas_suc Δ Δ' Δ'' p E i K l v e1 v1 e2 v2 Φ : +Lemma tac_wp_cas_suc Δ Δ' Δ'' s E i K l v e1 v1 e2 v2 Φ : IntoVal e1 v1 → IntoVal e2 v2 → IntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → v = v1 → envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' = Some Δ'' → - envs_entails Δ'' (WP fill K (Lit (LitBool true)) @ p; E {{ Φ }}) → - envs_entails Δ (WP fill K (CAS (Lit (LitLoc l)) e1 e2) @ p; E {{ Φ }}). + envs_entails Δ'' (WP fill K (Lit (LitBool true)) @ s; E {{ Φ }}) → + envs_entails Δ (WP fill K (CAS (Lit (LitLoc l)) e1 e2) @ s; E {{ Φ }}). Proof. rewrite /envs_entails=> ???????; subst. rewrite -wp_bind. eapply wand_apply; first exact: wp_cas_suc. @@ -151,7 +151,7 @@ End heap. Tactic Notation "wp_apply" open_constr(lem) := iPoseProofCore lem as false true (fun H => lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => wp_bind_core K; iApplyHyp H; try iNext; simpl) || lazymatch iTypeOf H with @@ -163,7 +163,7 @@ Tactic Notation "wp_apply" open_constr(lem) := Tactic Notation "wp_alloc" ident(l) "as" constr(H) := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc _ _ _ _ H K); [apply _|..]) @@ -182,7 +182,7 @@ Tactic Notation "wp_alloc" ident(l) := Tactic Notation "wp_load" := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ K)) |fail 1 "wp_load: cannot find 'Load' in" e]; @@ -196,7 +196,7 @@ Tactic Notation "wp_load" := Tactic Notation "wp_store" := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_store _ _ _ _ _ _ K); [apply _|..]) @@ -212,7 +212,7 @@ Tactic Notation "wp_store" := Tactic Notation "wp_cas_fail" := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_cas_fail _ _ _ _ _ K); [apply _|apply _|..]) @@ -228,7 +228,7 @@ Tactic Notation "wp_cas_fail" := Tactic Notation "wp_cas_suc" := iStartProof; lazymatch goal with - | |- envs_entails _ (wp ?p ?E ?e ?Q) => + | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_cas_suc _ _ _ _ _ _ K); [apply _|apply _|..]) diff --git a/theories/program_logic/adequacy.v b/theories/program_logic/adequacy.v index f8920dd6e62cf3790e199a0639a4fa829589270c..a7f1bdd1d19dc7dc59e900ce4450365ce2988c29 100644 --- a/theories/program_logic/adequacy.v +++ b/theories/program_logic/adequacy.v @@ -34,24 +34,24 @@ Proof. Qed. (* Program logic adequacy *) -Record adequate {Λ} (p : pbit) (e1 : expr Λ) (σ1 : state Λ) (φ : val Λ → Prop) := { +Record adequate {Λ} (s : stuckness) (e1 : expr Λ) (σ1 : state Λ) (φ : val Λ → Prop) := { adequate_result t2 σ2 v2 : rtc step ([e1], σ1) (of_val v2 :: t2, σ2) → φ v2; adequate_safe t2 σ2 e2 : - p = progress → + s = not_stuck → rtc step ([e1], σ1) (t2, σ2) → e2 ∈ t2 → progressive e2 σ2 }. Theorem adequate_tp_safe {Λ} (e1 : expr Λ) t2 σ1 σ2 φ : - adequate progress e1 σ1 φ → + adequate not_stuck e1 σ1 φ → rtc step ([e1], σ1) (t2, σ2) → Forall (λ e, is_Some (to_val e)) t2 ∨ ∃ t3 σ3, step (t2, σ2) (t3, σ3). Proof. intros Had ?. destruct (decide (Forall (λ e, is_Some (to_val e)) t2)) as [|Ht2]; [by left|]. apply (not_Forall_Exists _), Exists_exists in Ht2; destruct Ht2 as (e2&?&He2). - destruct (adequate_safe progress e1 σ1 φ Had t2 σ2 e2) as [?|(e3&σ3&efs&?)]; + destruct (adequate_safe not_stuck e1 σ1 φ Had t2 σ2 e2) as [?|(e3&σ3&efs&?)]; rewrite ?eq_None_not_Some; auto. { exfalso. eauto. } destruct (elem_of_list_split t2 e2) as (t2'&t2''&->); auto. @@ -68,12 +68,12 @@ Implicit Types Φs : list (val Λ → iProp Σ). Notation world' E σ := (wsat ∗ ownE E ∗ state_interp σ)%I (only parsing). Notation world σ := (world' ⊤ σ) (only parsing). -Notation wptp p t := ([∗ list] ef ∈ t, WP ef @ p; ⊤ {{ _, True }})%I. +Notation wptp s t := ([∗ list] ef ∈ t, WP ef @ s; ⊤ {{ _, True }})%I. -Lemma wp_step p E e1 σ1 e2 σ2 efs Φ : +Lemma wp_step s E e1 σ1 e2 σ2 efs Φ : prim_step e1 σ1 e2 σ2 efs → - world' E σ1 ∗ WP e1 @ p; E {{ Φ }} - ==∗ â–· |==> â—‡ (world' E σ2 ∗ WP e2 @ p; E {{ Φ }} ∗ wptp p efs). + world' E σ1 ∗ WP e1 @ s; E {{ Φ }} + ==∗ â–· |==> â—‡ (world' E σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ wptp s efs). Proof. rewrite {1}wp_unfold /wp_pre. iIntros (?) "[(Hw & HE & Hσ) H]". rewrite (val_stuck e1 σ1 e2 σ2 efs) // fupd_eq /fupd_def. @@ -82,10 +82,10 @@ Proof. iMod ("H" $! e2 σ2 efs with "[%] [$Hw $HE]") as ">($ & $ & $ & $)"; auto. Qed. -Lemma wptp_step p e1 t1 t2 σ1 σ2 Φ : +Lemma wptp_step s e1 t1 t2 σ1 σ2 Φ : step (e1 :: t1,σ1) (t2, σ2) → - world σ1 ∗ WP e1 @ p; ⊤ {{ Φ }} ∗ wptp p t1 - ==∗ ∃ e2 t2', ⌜t2 = e2 :: t2'⌠∗ â–· |==> â—‡ (world σ2 ∗ WP e2 @ p; ⊤ {{ Φ }} ∗ wptp p t2'). + world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 + ==∗ ∃ e2 t2', ⌜t2 = e2 :: t2'⌠∗ â–· |==> â—‡ (world σ2 ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). Proof. iIntros (Hstep) "(HW & He & Ht)". destruct Hstep as [e1' σ1' e2' σ2' efs [|? t1'] t2' ?? Hstep]; simplify_eq/=. @@ -96,11 +96,11 @@ Proof. iApply wp_step; eauto with iFrame. Qed. -Lemma wptp_steps p n e1 t1 t2 σ1 σ2 Φ : +Lemma wptp_steps s n e1 t1 t2 σ1 σ2 Φ : nsteps step n (e1 :: t1, σ1) (t2, σ2) → - world σ1 ∗ WP e1 @ p; ⊤ {{ Φ }} ∗ wptp p t1 ⊢ + world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ Nat.iter (S n) (λ P, |==> â–· P) (∃ e2 t2', - ⌜t2 = e2 :: t2'⌠∗ world σ2 ∗ WP e2 @ p; ⊤ {{ Φ }} ∗ wptp p t2'). + ⌜t2 = e2 :: t2'⌠∗ world σ2 ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). Proof. revert e1 t1 t2 σ1 σ2; simpl; induction n as [|n IH]=> e1 t1 t2 σ1 σ2 /=. { inversion_clear 1; iIntros "?"; eauto 10. } @@ -122,9 +122,9 @@ Proof. by rewrite bupd_frame_l {1}(later_intro R) -later_sep IH. Qed. -Lemma wptp_result p n e1 t1 v2 t2 σ1 σ2 φ : +Lemma wptp_result s n e1 t1 v2 t2 σ1 σ2 φ : nsteps step n (e1 :: t1, σ1) (of_val v2 :: t2, σ2) → - world σ1 ∗ WP e1 @ p; ⊤ {{ v, ⌜φ v⌠}} ∗ wptp p t1 ⊢ â–·^(S (S n)) ⌜φ v2âŒ. + world σ1 ∗ WP e1 @ s; ⊤ {{ v, ⌜φ v⌠}} ∗ wptp s t1 ⊢ â–·^(S (S n)) ⌜φ v2âŒ. Proof. intros. rewrite wptp_steps // laterN_later. apply: bupd_iter_laterN_mono. iDestruct 1 as (e2 t2' ?) "((Hw & HE & _) & H & _)"; simplify_eq. @@ -144,7 +144,7 @@ Qed. Lemma wptp_safe n e1 e2 t1 t2 σ1 σ2 Φ : nsteps step n (e1 :: t1, σ1) (t2, σ2) → e2 ∈ t2 → - world σ1 ∗ WP e1 {{ Φ }} ∗ wptp progress t1 + world σ1 ∗ WP e1 {{ Φ }} ∗ wptp not_stuck t1 ⊢ â–·^(S (S n)) ⌜progressive e2 σ2âŒ. Proof. intros ? He2. rewrite wptp_steps // laterN_later. apply: bupd_iter_laterN_mono. @@ -154,9 +154,9 @@ Proof. - iMod (wp_safe with "Hw [Htp]") as "$". by iApply (big_sepL_elem_of with "Htp"). Qed. -Lemma wptp_invariance p n e1 e2 t1 t2 σ1 σ2 φ Φ : +Lemma wptp_invariance s n e1 e2 t1 t2 σ1 σ2 φ Φ : nsteps step n (e1 :: t1, σ1) (t2, σ2) → - (state_interp σ2 ={⊤,∅}=∗ ⌜φâŒ) ∗ world σ1 ∗ WP e1 @ p; ⊤ {{ Φ }} ∗ wptp p t1 + (state_interp σ2 ={⊤,∅}=∗ ⌜φâŒ) ∗ world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ â–·^(S (S n)) ⌜φâŒ. Proof. intros ?. rewrite wptp_steps // bupd_iter_frame_l laterN_later. @@ -167,12 +167,12 @@ Proof. Qed. End adequacy. -Theorem wp_adequacy Σ Λ `{invPreG Σ} p e σ φ : +Theorem wp_adequacy Σ Λ `{invPreG Σ} s e σ φ : (∀ `{Hinv : invG Σ}, (|={⊤}=> ∃ stateI : state Λ → iProp Σ, let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ p; ⊤ {{ v, ⌜φ v⌠}})%I) → - adequate p e σ φ. + stateI σ ∗ WP e @ s; ⊤ {{ v, ⌜φ v⌠}})%I) → + adequate s e σ φ. Proof. intros Hwp; split. - intros t2 σ2 v2 [n ?]%rtc_nsteps. @@ -181,7 +181,7 @@ Proof. rewrite fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". iApply (@wptp_result _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. - - destruct p; last done. intros t2 σ2 e2 _ [n ?]%rtc_nsteps ?. + - destruct s; last done. intros t2 σ2 e2 _ [n ?]%rtc_nsteps ?. eapply (soundness (M:=iResUR Σ) _ (S (S n))). iMod wsat_alloc as (Hinv) "[Hw HE]". rewrite fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". @@ -189,11 +189,11 @@ Proof. iApply (@wptp_safe _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. Qed. -Theorem wp_invariance Σ Λ `{invPreG Σ} p e σ1 t2 σ2 φ : +Theorem wp_invariance Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : (∀ `{Hinv : invG Σ}, (|={⊤}=> ∃ stateI : state Λ → iProp Σ, let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ1 ∗ WP e @ p; ⊤ {{ _, True }} ∗ (stateI σ2 ={⊤,∅}=∗ ⌜φâŒ))%I) → + stateI σ1 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 ={⊤,∅}=∗ ⌜φâŒ))%I) → rtc step ([e], σ1) (t2, σ2) → φ. Proof. diff --git a/theories/program_logic/ectx_lifting.v b/theories/program_logic/ectx_lifting.v index bc417744dbbbdfe2cfc8f235156cbb7870daedb2..a3d0cb7684708402507ad5f82bf25013445236ee 100644 --- a/theories/program_logic/ectx_lifting.v +++ b/theories/program_logic/ectx_lifting.v @@ -6,7 +6,7 @@ Set Default Proof Using "Type". Section wp. Context {expr val ectx state} {Λ : EctxLanguage expr val ectx state}. Context `{irisG (ectx_lang expr) Σ} {Hinh : Inhabited state}. -Implicit Types p : pbit. +Implicit Types s : stuckness. Implicit Types P : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types v : val. @@ -15,27 +15,27 @@ Hint Resolve head_prim_reducible head_reducible_prim_step. Hint Resolve (reducible_not_val _ inhabitant). Hint Resolve progressive_head_progressive. -Lemma wp_ectx_bind {p E e} K Φ : - WP e @ p; E {{ v, WP fill K (of_val v) @ p; E {{ Φ }} }} - ⊢ WP fill K e @ p; E {{ Φ }}. +Lemma wp_ectx_bind {s E e} K Φ : + WP e @ s; E {{ v, WP fill K (of_val v) @ s; E {{ Φ }} }} + ⊢ WP fill K e @ s; E {{ Φ }}. Proof. apply: weakestpre.wp_bind. Qed. -Lemma wp_ectx_bind_inv {p E Φ} K e : - WP fill K e @ p; E {{ Φ }} - ⊢ WP e @ p; E {{ v, WP fill K (of_val v) @ p; E {{ Φ }} }}. +Lemma wp_ectx_bind_inv {s E Φ} K e : + WP fill K e @ s; E {{ Φ }} + ⊢ WP e @ s; E {{ v, WP fill K (of_val v) @ s; E {{ Φ }} }}. Proof. apply: weakestpre.wp_bind_inv. Qed. -Lemma wp_lift_head_step {p E Φ} e1 : +Lemma wp_lift_head_step {s E Φ} e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E,∅}=∗ ⌜head_reducible e1 σ1⌠∗ â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_step=>//. iIntros (σ1) "Hσ". iMod ("H" with "Hσ") as "[% H]"; iModIntro. - iSplit; first by destruct p; eauto. iNext. iIntros (e2 σ2 efs) "%". + iSplit; first by destruct s; eauto. iNext. iIntros (e2 σ2 efs) "%". iApply "H"; eauto. Qed. @@ -48,15 +48,15 @@ Proof. iIntros (σ) "Hσ". iMod ("H" with "Hσ") as "%". by auto. Qed. -Lemma wp_lift_pure_head_step {p E E' Φ} e1 : +Lemma wp_lift_pure_head_step {s E E' Φ} e1 : (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2 σ2 efs, head_step e1 σ1 e2 σ2 efs → σ1 = σ2) → (|={E,E'}â–·=> ∀ e2 efs σ, ⌜head_step e1 σ e2 σ efs⌠→ - WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (??) "H". iApply wp_lift_pure_step; eauto. - { by destruct p; auto. } + { by destruct s; auto. } iApply (step_fupd_wand with "H"); iIntros "H". iIntros (????). iApply "H"; eauto. Qed. @@ -72,28 +72,28 @@ Proof using Hinh. move=>[] K [] e1 [] Hfill [] e2 [] σ2 [] efs /= Hstep. exact: Hnstep. Qed. -Lemma wp_lift_atomic_head_step {p E Φ} e1 : +Lemma wp_lift_atomic_head_step {s E Φ} e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E}=∗ ⌜head_reducible e1 σ1⌠∗ â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E}=∗ state_interp σ2 ∗ - default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step; eauto. iIntros (σ1) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct p; auto. iNext. iIntros (e2 σ2 efs) "%". + iSplit; first by destruct s; auto. iNext. iIntros (e2 σ2 efs) "%". iApply "H"; auto. Qed. -Lemma wp_lift_atomic_head_step_no_fork {p E Φ} e1 : +Lemma wp_lift_atomic_head_step_no_fork {s E Φ} e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E}=∗ ⌜head_reducible e1 σ1⌠∗ â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E}=∗ ⌜efs = []⌠∗ state_interp σ2 ∗ default False (to_val e2) Φ) - ⊢ WP e1 @ p; E {{ Φ }}. + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_head_step; eauto. iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. @@ -101,29 +101,29 @@ Proof. iMod ("H" $! v2 σ2 efs with "[# //]") as "(% & $ & $)"; subst; auto. Qed. -Lemma wp_lift_pure_det_head_step {p E E' Φ} e1 e2 efs : +Lemma wp_lift_pure_det_head_step {s E E' Φ} e1 e2 efs : (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → - (|={E,E'}â–·=> WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. intros. rewrite -(wp_lift_pure_det_step e1 e2 efs); eauto. - destruct p; by auto. + destruct s; by auto. Qed. -Lemma wp_lift_pure_det_head_step_no_fork {p E E' Φ} e1 e2 : +Lemma wp_lift_pure_det_head_step_no_fork {s E E' Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → - (|={E,E'}â–·=> WP e2 @ p; E {{ Φ }}) ⊢ WP e1 @ p; E {{ Φ }}. + (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. intros. rewrite -(wp_lift_pure_det_step e1 e2 []) /= ?right_id; eauto. - destruct p; by auto. + destruct s; by auto. Qed. -Lemma wp_lift_pure_det_head_step_no_fork' {p E Φ} e1 e2 : +Lemma wp_lift_pure_det_head_step_no_fork' {s E Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2' σ2 efs', diff --git a/theories/program_logic/hoare.v b/theories/program_logic/hoare.v index bacf594b100b77c1503315e173d690d7468e45cd..549db62c565dcf36658a84f1caf4ee943c56f5ff 100644 --- a/theories/program_logic/hoare.v +++ b/theories/program_logic/hoare.v @@ -3,83 +3,83 @@ From iris.base_logic.lib Require Export viewshifts. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". -Definition ht `{irisG Λ Σ} (p : pbit) (E : coPset) (P : iProp Σ) +Definition ht `{irisG Λ Σ} (s : stuckness) (E : coPset) (P : iProp Σ) (e : expr Λ) (Φ : val Λ → iProp Σ) : iProp Σ := - (â–¡ (P -∗ WP e @ p; E {{ Φ }}))%I. + (â–¡ (P -∗ WP e @ s; E {{ Φ }}))%I. Instance: Params (@ht) 5. -Notation "{{ P } } e @ p ; E {{ Φ } }" := (ht p E P%I e%E Φ%I) +Notation "{{ P } } e @ s ; E {{ Φ } }" := (ht s E P%I e%E Φ%I) (at level 20, P, e, Φ at level 200, - format "{{ P } } e @ p ; E {{ Φ } }") : C_scope. -Notation "{{ P } } e @ E {{ Φ } }" := (ht progress E P%I e%E Φ%I) + format "{{ P } } e @ s ; E {{ Φ } }") : C_scope. +Notation "{{ P } } e @ E {{ Φ } }" := (ht not_stuck E P%I e%E Φ%I) (at level 20, P, e, Φ at level 200, format "{{ P } } e @ E {{ Φ } }") : C_scope. -Notation "{{ P } } e @ E ? {{ Φ } }" := (ht noprogress E P%I e%E Φ%I) +Notation "{{ P } } e @ E ? {{ Φ } }" := (ht maybe_stuck E P%I e%E Φ%I) (at level 20, P, e, Φ at level 200, format "{{ P } } e @ E ? {{ Φ } }") : C_scope. -Notation "{{ P } } e {{ Φ } }" := (ht progress ⊤ P%I e%E Φ%I) +Notation "{{ P } } e {{ Φ } }" := (ht not_stuck ⊤ P%I e%E Φ%I) (at level 20, P, e, Φ at level 200, format "{{ P } } e {{ Φ } }") : C_scope. -Notation "{{ P } } e ? {{ Φ } }" := (ht noprogress ⊤ P%I e%E Φ%I) +Notation "{{ P } } e ? {{ Φ } }" := (ht maybe_stuck ⊤ P%I e%E Φ%I) (at level 20, P, e, Φ at level 200, format "{{ P } } e ? {{ Φ } }") : C_scope. -Notation "{{ P } } e @ p ; E {{ v , Q } }" := (ht p E P%I e%E (λ v, Q)%I) +Notation "{{ P } } e @ s ; E {{ v , Q } }" := (ht s E P%I e%E (λ v, Q)%I) (at level 20, P, e, Q at level 200, - format "{{ P } } e @ p ; E {{ v , Q } }") : C_scope. -Notation "{{ P } } e @ E {{ v , Q } }" := (ht progress E P%I e%E (λ v, Q)%I) + format "{{ P } } e @ s ; E {{ v , Q } }") : C_scope. +Notation "{{ P } } e @ E {{ v , Q } }" := (ht not_stuck E P%I e%E (λ v, Q)%I) (at level 20, P, e, Q at level 200, format "{{ P } } e @ E {{ v , Q } }") : C_scope. -Notation "{{ P } } e @ E ? {{ v , Q } }" := (ht noprogress E P%I e%E (λ v, Q)%I) +Notation "{{ P } } e @ E ? {{ v , Q } }" := (ht maybe_stuck E P%I e%E (λ v, Q)%I) (at level 20, P, e, Q at level 200, format "{{ P } } e @ E ? {{ v , Q } }") : C_scope. -Notation "{{ P } } e {{ v , Q } }" := (ht progress ⊤ P%I e%E (λ v, Q)%I) +Notation "{{ P } } e {{ v , Q } }" := (ht not_stuck ⊤ P%I e%E (λ v, Q)%I) (at level 20, P, e, Q at level 200, format "{{ P } } e {{ v , Q } }") : C_scope. -Notation "{{ P } } e ? {{ v , Q } }" := (ht noprogress ⊤ P%I e%E (λ v, Q)%I) +Notation "{{ P } } e ? {{ v , Q } }" := (ht maybe_stuck ⊤ P%I e%E (λ v, Q)%I) (at level 20, P, e, Q at level 200, format "{{ P } } e ? {{ v , Q } }") : C_scope. Section hoare. Context `{irisG Λ Σ}. -Implicit Types p : pbit. +Implicit Types s : stuckness. Implicit Types P Q : iProp Σ. Implicit Types Φ Ψ : val Λ → iProp Σ. Implicit Types v : val Λ. Import uPred. -Global Instance ht_ne p E n : - Proper (dist n ==> eq ==> pointwise_relation _ (dist n) ==> dist n) (ht p E). +Global Instance ht_ne s E n : + Proper (dist n ==> eq ==> pointwise_relation _ (dist n) ==> dist n) (ht s E). Proof. solve_proper. Qed. -Global Instance ht_proper p E : - Proper ((≡) ==> eq ==> pointwise_relation _ (≡) ==> (≡)) (ht p E). +Global Instance ht_proper s E : + Proper ((≡) ==> eq ==> pointwise_relation _ (≡) ==> (≡)) (ht s E). Proof. solve_proper. Qed. -Lemma ht_mono p E P P' Φ Φ' e : - (P ⊢ P') → (∀ v, Φ' v ⊢ Φ v) → {{ P' }} e @ p; E {{ Φ' }} ⊢ {{ P }} e @ p; E {{ Φ }}. +Lemma ht_mono s E P P' Φ Φ' e : + (P ⊢ P') → (∀ v, Φ' v ⊢ Φ v) → {{ P' }} e @ s; E {{ Φ' }} ⊢ {{ P }} e @ s; E {{ Φ }}. Proof. by intros; apply persistently_mono, wand_mono, wp_mono. Qed. -Global Instance ht_mono' p E : - Proper (flip (⊢) ==> eq ==> pointwise_relation _ (⊢) ==> (⊢)) (ht p E). +Global Instance ht_mono' s E : + Proper (flip (⊢) ==> eq ==> pointwise_relation _ (⊢) ==> (⊢)) (ht s E). Proof. solve_proper. Qed. -Lemma ht_alt p E P Φ e : (P ⊢ WP e @ p; E {{ Φ }}) → {{ P }} e @ p; E {{ Φ }}. +Lemma ht_alt s E P Φ e : (P ⊢ WP e @ s; E {{ Φ }}) → {{ P }} e @ s; E {{ Φ }}. Proof. iIntros (Hwp) "!# HP". by iApply Hwp. Qed. -Lemma ht_val p E v : {{ True }} of_val v @ p; E {{ v', ⌜v = v'⌠}}. +Lemma ht_val s E v : {{ True }} of_val v @ s; E {{ v', ⌜v = v'⌠}}. Proof. iIntros "!# _". by iApply wp_value'. Qed. -Lemma ht_vs p E P P' Φ Φ' e : - (P ={E}=> P') ∧ {{ P' }} e @ p; E {{ Φ' }} ∧ (∀ v, Φ' v ={E}=> Φ v) - ⊢ {{ P }} e @ p; E {{ Φ }}. +Lemma ht_vs s E P P' Φ Φ' e : + (P ={E}=> P') ∧ {{ P' }} e @ s; E {{ Φ' }} ∧ (∀ v, Φ' v ={E}=> Φ v) + ⊢ {{ P }} e @ s; E {{ Φ }}. Proof. iIntros "(#Hvs & #Hwp & #HΦ) !# HP". iMod ("Hvs" with "HP") as "HP". iApply wp_fupd. iApply (wp_wand with "[HP]"); [by iApply "Hwp"|]. iIntros (v) "Hv". by iApply "HΦ". Qed. -Lemma ht_atomic' p E1 E2 P P' Φ Φ' e : - StronglyAtomic e ∨ p = progress ∧ Atomic e → - (P ={E1,E2}=> P') ∧ {{ P' }} e @ p; E2 {{ Φ' }} ∧ (∀ v, Φ' v ={E2,E1}=> Φ v) - ⊢ {{ P }} e @ p; E1 {{ Φ }}. +Lemma ht_atomic' s E1 E2 P P' Φ Φ' e : + StronglyAtomic e ∨ s = not_stuck ∧ Atomic e → + (P ={E1,E2}=> P') ∧ {{ P' }} e @ s; E2 {{ Φ' }} ∧ (∀ v, Φ' v ={E2,E1}=> Φ v) + ⊢ {{ P }} e @ s; E1 {{ Φ }}. Proof. iIntros (?) "(#Hvs & #Hwp & #HΦ) !# HP". iApply (wp_atomic' _ _ E2); auto. iMod ("Hvs" with "HP") as "HP". iModIntro. @@ -87,10 +87,10 @@ Proof. iIntros (v) "Hv". by iApply "HΦ". Qed. -Lemma ht_strong_atomic p E1 E2 P P' Φ Φ' e : +Lemma ht_strong_atomic s E1 E2 P P' Φ Φ' e : StronglyAtomic e → - (P ={E1,E2}=> P') ∧ {{ P' }} e @ p; E2 {{ Φ' }} ∧ (∀ v, Φ' v ={E2,E1}=> Φ v) - ⊢ {{ P }} e @ p; E1 {{ Φ }}. + (P ={E1,E2}=> P') ∧ {{ P' }} e @ s; E2 {{ Φ' }} ∧ (∀ v, Φ' v ={E2,E1}=> Φ v) + ⊢ {{ P }} e @ s; E1 {{ Φ }}. Proof. by eauto using ht_atomic'. Qed. Lemma ht_atomic E1 E2 P P' Φ Φ' e : @@ -99,67 +99,67 @@ Lemma ht_atomic E1 E2 P P' Φ Φ' e : ⊢ {{ P }} e @ E1 {{ Φ }}. Proof. by eauto using ht_atomic'. Qed. -Lemma ht_bind `{LanguageCtx Λ K} p E P Φ Φ' e : - {{ P }} e @ p; E {{ Φ }} ∧ (∀ v, {{ Φ v }} K (of_val v) @ p; E {{ Φ' }}) - ⊢ {{ P }} K e @ p; E {{ Φ' }}. +Lemma ht_bind `{LanguageCtx Λ K} s E P Φ Φ' e : + {{ P }} e @ s; E {{ Φ }} ∧ (∀ v, {{ Φ v }} K (of_val v) @ s; E {{ Φ' }}) + ⊢ {{ P }} K e @ s; E {{ Φ' }}. Proof. iIntros "[#Hwpe #HwpK] !# HP". iApply wp_bind. iApply (wp_wand with "[HP]"); [by iApply "Hwpe"|]. iIntros (v) "Hv". by iApply "HwpK". Qed. -Lemma ht_forget_progress p E P Φ e : - {{ P }} e @ p; E {{ Φ }} ⊢ {{ P }} e @ E ?{{ Φ }}. +Lemma ht_forget_not_stuck s E P Φ e : + {{ P }} e @ s; E {{ Φ }} ⊢ {{ P }} e @ E ?{{ Φ }}. Proof. - by iIntros "#Hwp !# ?"; iApply wp_forget_progress; iApply "Hwp". + by iIntros "#Hwp !# ?"; iApply wp_forget_not_stuck; iApply "Hwp". Qed. -Lemma ht_mask_weaken p E1 E2 P Φ e : - E1 ⊆ E2 → {{ P }} e @ p; E1 {{ Φ }} ⊢ {{ P }} e @ p; E2 {{ Φ }}. +Lemma ht_mask_weaken s E1 E2 P Φ e : + E1 ⊆ E2 → {{ P }} e @ s; E1 {{ Φ }} ⊢ {{ P }} e @ s; E2 {{ Φ }}. Proof. iIntros (?) "#Hwp !# HP". iApply (wp_mask_mono _ E1 E2); try done. by iApply "Hwp". Qed. -Lemma ht_frame_l p E P Φ R e : - {{ P }} e @ p; E {{ Φ }} ⊢ {{ R ∗ P }} e @ p; E {{ v, R ∗ Φ v }}. +Lemma ht_frame_l s E P Φ R e : + {{ P }} e @ s; E {{ Φ }} ⊢ {{ R ∗ P }} e @ s; E {{ v, R ∗ Φ v }}. Proof. iIntros "#Hwp !# [$ HP]". by iApply "Hwp". Qed. -Lemma ht_frame_r p E P Φ R e : - {{ P }} e @ p; E {{ Φ }} ⊢ {{ P ∗ R }} e @ p; E {{ v, Φ v ∗ R }}. +Lemma ht_frame_r s E P Φ R e : + {{ P }} e @ s; E {{ Φ }} ⊢ {{ P ∗ R }} e @ s; E {{ v, Φ v ∗ R }}. Proof. iIntros "#Hwp !# [HP $]". by iApply "Hwp". Qed. -Lemma ht_frame_step_l p E1 E2 P R1 R2 e Φ : +Lemma ht_frame_step_l s E1 E2 P R1 R2 e Φ : to_val e = None → E2 ⊆ E1 → - (R1 ={E1,E2}=> â–· |={E2,E1}=> R2) ∧ {{ P }} e @ p; E2 {{ Φ }} - ⊢ {{ R1 ∗ P }} e @ p; E1 {{ λ v, R2 ∗ Φ v }}. + (R1 ={E1,E2}=> â–· |={E2,E1}=> R2) ∧ {{ P }} e @ s; E2 {{ Φ }} + ⊢ {{ R1 ∗ P }} e @ s; E1 {{ λ v, R2 ∗ Φ v }}. Proof. iIntros (??) "[#Hvs #Hwp] !# [HR HP]". iApply (wp_frame_step_l _ E1 E2); try done. iSplitL "HR"; [by iApply "Hvs"|by iApply "Hwp"]. Qed. -Lemma ht_frame_step_r p E1 E2 P R1 R2 e Φ : +Lemma ht_frame_step_r s E1 E2 P R1 R2 e Φ : to_val e = None → E2 ⊆ E1 → - (R1 ={E1,E2}=> â–· |={E2,E1}=> R2) ∧ {{ P }} e @ p; E2 {{ Φ }} - ⊢ {{ P ∗ R1 }} e @ p; E1 {{ λ v, Φ v ∗ R2 }}. + (R1 ={E1,E2}=> â–· |={E2,E1}=> R2) ∧ {{ P }} e @ s; E2 {{ Φ }} + ⊢ {{ P ∗ R1 }} e @ s; E1 {{ λ v, Φ v ∗ R2 }}. Proof. iIntros (??) "[#Hvs #Hwp] !# [HP HR]". iApply (wp_frame_step_r _ E1 E2); try done. iSplitR "HR"; [by iApply "Hwp"|by iApply "Hvs"]. Qed. -Lemma ht_frame_step_l' p E P R e Φ : +Lemma ht_frame_step_l' s E P R e Φ : to_val e = None → - {{ P }} e @ p; E {{ Φ }} ⊢ {{ â–· R ∗ P }} e @ p; E {{ v, R ∗ Φ v }}. + {{ P }} e @ s; E {{ Φ }} ⊢ {{ â–· R ∗ P }} e @ s; E {{ v, R ∗ Φ v }}. Proof. iIntros (?) "#Hwp !# [HR HP]". iApply wp_frame_step_l'; try done. iFrame "HR". by iApply "Hwp". Qed. -Lemma ht_frame_step_r' p E P Φ R e : +Lemma ht_frame_step_r' s E P Φ R e : to_val e = None → - {{ P }} e @ p; E {{ Φ }} ⊢ {{ P ∗ â–· R }} e @ p; E {{ v, Φ v ∗ R }}. + {{ P }} e @ s; E {{ Φ }} ⊢ {{ P ∗ â–· R }} e @ s; E {{ v, Φ v ∗ R }}. Proof. iIntros (?) "#Hwp !# [HP HR]". iApply wp_frame_step_r'; try done. iFrame "HR". by iApply "Hwp". diff --git a/theories/program_logic/language.v b/theories/program_logic/language.v index c78e841e57f91645411c25784ab8826d3af9b498..0bf6c5ee6e2d26d93691811bd8c3cbb505e7c04c 100644 --- a/theories/program_logic/language.v +++ b/theories/program_logic/language.v @@ -43,7 +43,7 @@ Class LanguageCtx (Λ : language) (K : expr Λ → expr Λ) := { Instance language_ctx_id Λ : LanguageCtx Λ id. Proof. constructor; naive_solver. Qed. -Variant pbit := progress | noprogress. +Variant stuckness := not_stuck | maybe_stuck. Section language. Context {Λ : language}. diff --git a/theories/program_logic/lifting.v b/theories/program_logic/lifting.v index 1d4d09027118111ba246bb85bb021ba6a85c3eb9..f69906141067142a31e6665ef404504fe7406f1f 100644 --- a/theories/program_logic/lifting.v +++ b/theories/program_logic/lifting.v @@ -5,23 +5,23 @@ Set Default Proof Using "Type". Section lifting. Context `{irisG Λ Σ}. -Implicit Types p : pbit. +Implicit Types s : stuckness. Implicit Types v : val Λ. Implicit Types e : expr Λ. Implicit Types σ : state Λ. Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. -Lemma wp_lift_step p E Φ e1 : +Lemma wp_lift_step s E Φ e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E,∅}=∗ - ⌜if p then reducible e1 σ1 else True⌠∗ + ⌜if s is not_stuck then reducible e1 σ1 else True⌠∗ â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". - iMod ("H" with "Hσ") as "(%&?)". iModIntro. iSplit. by destruct p. done. + iMod ("H" with "Hσ") as "(%&?)". iModIntro. iSplit. by destruct s. done. Qed. Lemma wp_lift_stuck E Φ e : @@ -36,13 +36,13 @@ Proof. Qed. (** Derived lifting lemmas. *) -Lemma wp_lift_pure_step `{Inhabited (state Λ)} p E E' Φ e1 : +Lemma wp_lift_pure_step `{Inhabited (state Λ)} s E E' Φ e1 : to_val e1 = None → - (∀ σ1, if p then reducible e1 σ1 else True) → + (∀ σ1, if s is not_stuck then reducible e1 σ1 else True) → (∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) → (|={E,E'}â–·=> ∀ e2 efs σ, ⌜prim_step e1 σ e2 σ efs⌠→ - WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (? Hsafe Hstep) "H". iApply wp_lift_step; first done. iIntros (σ1) "Hσ". iMod "H". @@ -65,16 +65,16 @@ Qed. (* Atomic steps don't need any mask-changing business here, one can use the generic lemmas here. *) -Lemma wp_lift_atomic_step {p E Φ} e1 : +Lemma wp_lift_atomic_step {s E Φ} e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E}=∗ - ⌜if p then reducible e1 σ1 else True⌠∗ + ⌜if s is not_stuck then reducible e1 σ1 else True⌠∗ â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={E}=∗ state_interp σ2 ∗ - default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply (wp_lift_step p E _ e1)=>//; iIntros (σ1) "Hσ1". + iIntros (?) "H". iApply (wp_lift_step s E _ e1)=>//; iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. iModIntro; iNext; iIntros (e2 σ2 efs) "%". iMod "Hclose" as "_". @@ -83,36 +83,36 @@ Proof. by iApply wp_value. Qed. -Lemma wp_lift_pure_det_step `{Inhabited (state Λ)} {p E E' Φ} e1 e2 efs : +Lemma wp_lift_pure_det_step `{Inhabited (state Λ)} {s E E' Φ} e1 e2 efs : to_val e1 = None → - (∀ σ1, if p then reducible e1 σ1 else true) → + (∀ σ1, if s is not_stuck then reducible e1 σ1 else true) → (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ - (|={E,E'}â–·=> WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?? Hpuredet) "H". iApply (wp_lift_pure_step p E E'); try done. + iIntros (?? Hpuredet) "H". iApply (wp_lift_pure_step s E E'); try done. { by intros; eapply Hpuredet. } iApply (step_fupd_wand with "H"); iIntros "H". by iIntros (e' efs' σ (_&->&->)%Hpuredet). Qed. -Lemma wp_pure_step_fupd `{Inhabited (state Λ)} p E E' e1 e2 φ Φ : +Lemma wp_pure_step_fupd `{Inhabited (state Λ)} s E E' e1 e2 φ Φ : PureExec φ e1 e2 → φ → - (|={E,E'}â–·=> WP e2 @ p; E {{ Φ }}) ⊢ WP e1 @ p; E {{ Φ }}. + (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros ([??] Hφ) "HWP". iApply (wp_lift_pure_det_step with "[HWP]"). - apply (reducible_not_val _ inhabitant). by auto. - - destruct p; naive_solver. + - destruct s; naive_solver. - naive_solver. - by rewrite big_sepL_nil right_id. Qed. -Lemma wp_pure_step_later `{Inhabited (state Λ)} p E e1 e2 φ Φ : +Lemma wp_pure_step_later `{Inhabited (state Λ)} s E e1 e2 φ Φ : PureExec φ e1 e2 → φ → - â–· WP e2 @ p; E {{ Φ }} ⊢ WP e1 @ p; E {{ Φ }}. + â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof. intros ??. rewrite -wp_pure_step_fupd //. rewrite -step_fupd_intro //. Qed. diff --git a/theories/program_logic/ownp.v b/theories/program_logic/ownp.v index 8500869f3345e9635f0724d9ed3ef930c3d8c361..a7c51e14eaeb3c3d53b11f40b21ac72bb55e2e95 100644 --- a/theories/program_logic/ownp.v +++ b/theories/program_logic/ownp.v @@ -39,9 +39,9 @@ Instance: Params (@ownP) 3. (* Adequacy *) -Theorem ownP_adequacy Σ `{ownPPreG Λ Σ} p e σ φ : - (∀ `{ownPG Λ Σ}, ownP σ ⊢ WP e @ p; ⊤ {{ v, ⌜φ v⌠}}) → - adequate p e σ φ. +Theorem ownP_adequacy Σ `{ownPPreG Λ Σ} s e σ φ : + (∀ `{ownPG Λ Σ}, ownP σ ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → + adequate s e σ φ. Proof. intros Hwp. apply (wp_adequacy Σ _). iIntros (?) "". iMod (own_alloc (â— (Excl' (σ : leibnizC _)) â‹… â—¯ (Excl' σ))) @@ -50,13 +50,13 @@ Proof. iApply (Hwp (OwnPG _ _ _ _ γσ)). by rewrite /ownP. Qed. -Theorem ownP_invariance Σ `{ownPPreG Λ Σ} p e σ1 t2 σ2 φ : +Theorem ownP_invariance Σ `{ownPPreG Λ Σ} s e σ1 t2 σ2 φ : (∀ `{ownPG Λ Σ}, - ownP σ1 ={⊤}=∗ WP e @ p; ⊤ {{ _, True }} ∗ |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'âŒ) → + ownP σ1 ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'âŒ) → rtc step ([e], σ1) (t2, σ2) → φ σ2. Proof. - intros Hwp Hsteps. eapply (wp_invariance Σ Λ p e σ1 t2 σ2 _)=> //. + intros Hwp Hsteps. eapply (wp_invariance Σ Λ s e σ1 t2 σ2 _)=> //. iIntros (?) "". iMod (own_alloc (â— (Excl' (σ1 : leibnizC _)) â‹… â—¯ (Excl' σ1))) as (γσ) "[Hσ Hσf]"; first done. iExists (λ σ, own γσ (â— (Excl' (σ:leibnizC _)))). iFrame "Hσ". @@ -70,7 +70,7 @@ Qed. (** Lifting *) Section lifting. Context `{ownPG Λ Σ}. - Implicit Types p : pbit. + Implicit Types s : stuckness. Implicit Types e : expr Λ. Implicit Types Φ : val Λ → iProp Σ. @@ -85,12 +85,12 @@ Section lifting. Global Instance ownP_timeless σ : Timeless (@ownP (state Λ) Σ _ σ). Proof. rewrite /ownP; apply _. Qed. - Lemma ownP_lift_step p E Φ e1 : + Lemma ownP_lift_step s E Φ e1 : to_val e1 = None → - (|={E,∅}=> ∃ σ1, ⌜if p then reducible e1 σ1 else True⌠∗ â–· ownP σ1 ∗ + (|={E,∅}=> ∃ σ1, ⌜if s is not_stuck then reducible e1 σ1 else True⌠∗ â–· ownP σ1 ∗ â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 - ={∅,E}=∗ WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_step; first done. iIntros (σ1) "Hσ"; iMod "H" as (σ1') "(% & >Hσf & H)". @@ -115,79 +115,79 @@ Section lifting. by iDestruct (ownP_eq with "Hσ Hσf") as %->. Qed. - Lemma ownP_lift_pure_step p E Φ e1 : + Lemma ownP_lift_pure_step s E Φ e1 : to_val e1 = None → - (∀ σ1, if p then reducible e1 σ1 else True) → + (∀ σ1, if s is not_stuck then reducible e1 σ1 else True) → (∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) → (â–· ∀ e2 efs σ, ⌜prim_step e1 σ e2 σ efs⌠→ - WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (? Hsafe Hstep) "H"; iApply wp_lift_step; first done. iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. - iModIntro; iSplit; [by destruct p|]; iNext; iIntros (e2 σ2 efs ?). + iModIntro; iSplit; [by destruct s|]; iNext; iIntros (e2 σ2 efs ?). destruct (Hstep σ1 e2 σ2 efs); auto; subst. by iMod "Hclose"; iModIntro; iFrame; iApply "H". Qed. (** Derived lifting lemmas. *) - Lemma ownP_lift_atomic_step {p E Φ} e1 σ1 : + Lemma ownP_lift_atomic_step {s E Φ} e1 σ1 : to_val e1 = None → - (if p then reducible e1 σ1 else True) → + (if s is not_stuck then reducible e1 σ1 else True) → (â–· ownP σ1 ∗ â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 -∗ - default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (??) "[Hσ H]"; iApply ownP_lift_step; first done. iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. - iModIntro; iExists σ1; iFrame; iSplit; first by destruct p. + iModIntro; iExists σ1; iFrame; iSplit; first by destruct s. iNext; iIntros (e2 σ2 efs) "% Hσ". iDestruct ("H" $! e2 σ2 efs with "[] [Hσ]") as "[HΦ $]"; [by eauto..|]. destruct (to_val e2) eqn:?; last by iExFalso. by iMod "Hclose"; iApply wp_value; auto using to_of_val. Qed. - Lemma ownP_lift_atomic_det_step {p E Φ e1} σ1 v2 σ2 efs : + Lemma ownP_lift_atomic_det_step {s E Φ e1} σ1 v2 σ2 efs : to_val e1 = None → - (if p then reducible e1 σ1 else True) → + (if s is not_stuck then reducible e1 σ1 else True) → (∀ e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs' → σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → â–· ownP σ1 ∗ â–· (ownP σ2 -∗ - Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?? Hdet) "[Hσ1 Hσ2]"; iApply ownP_lift_atomic_step; try done. iFrame; iNext; iIntros (e2' σ2' efs') "% Hσ2'". edestruct Hdet as (->&Hval&->). done. by rewrite Hval; iApply "Hσ2". Qed. - Lemma ownP_lift_atomic_det_step_no_fork {p E e1} σ1 v2 σ2 : + Lemma ownP_lift_atomic_det_step_no_fork {s E e1} σ1 v2 σ2 : to_val e1 = None → - (if p then reducible e1 σ1 else True) → + (if s is not_stuck then reducible e1 σ1 else True) → (∀ e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs' → σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → - {{{ â–· ownP σ1 }}} e1 @ p; E {{{ RET v2; ownP σ2 }}}. + {{{ â–· ownP σ1 }}} e1 @ s; E {{{ RET v2; ownP σ2 }}}. Proof. intros. rewrite -(ownP_lift_atomic_det_step σ1 v2 σ2 []); [|done..]. rewrite big_sepL_nil right_id. by apply uPred.wand_intro_r. Qed. - Lemma ownP_lift_pure_det_step {p E Φ} e1 e2 efs : + Lemma ownP_lift_pure_det_step {s E Φ} e1 e2 efs : to_val e1 = None → - (∀ σ1, if p then reducible e1 σ1 else True) → + (∀ σ1, if s is not_stuck then reducible e1 σ1 else True) → (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ - â–· (WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤{{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + â–· (WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤{{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?? Hpuredet) "?"; iApply ownP_lift_pure_step=>//. by apply Hpuredet. by iNext; iIntros (e' efs' σ (_&->&->)%Hpuredet). Qed. - Lemma ownP_lift_pure_det_step_no_fork `{Inhabited (state Λ)} {p E Φ} e1 e2 : + Lemma ownP_lift_pure_det_step_no_fork `{Inhabited (state Λ)} {s E Φ} e1 e2 : to_val e1 = None → - (∀ σ1, if p then reducible e1 σ1 else True) → + (∀ σ1, if s is not_stuck then reducible e1 σ1 else True) → (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → - â–· WP e2 @ p; E {{ Φ }} ⊢ WP e1 @ p; E {{ Φ }}. + â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof. intros. rewrite -(wp_lift_pure_det_step e1 e2 []) ?big_sepL_nil ?right_id; eauto. Qed. @@ -197,23 +197,23 @@ Section ectx_lifting. Import ectx_language. Context {expr val ectx state} {Λ : EctxLanguage expr val ectx state}. Context `{ownPG (ectx_lang expr) Σ} {Hinh : Inhabited state}. - Implicit Types p : pbit. + Implicit Types s : stuckness. Implicit Types Φ : val → iProp Σ. Implicit Types e : expr. Hint Resolve head_prim_reducible head_reducible_prim_step. Hint Resolve (reducible_not_val _ inhabitant). Hint Resolve progressive_head_progressive. - Lemma ownP_lift_head_step p E Φ e1 : + Lemma ownP_lift_head_step s E Φ e1 : to_val e1 = None → (|={E,∅}=> ∃ σ1, ⌜head_reducible e1 σ1⌠∗ â–· ownP σ1 ∗ â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 - ={∅,E}=∗ WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply ownP_lift_step; first done. iMod "H" as (σ1 ?) "[Hσ1 Hwp]". iModIntro. iExists σ1. - iSplit; first by destruct p; eauto. iFrame. iNext. iIntros (e2 σ2 efs) "% ?". + iSplit; first by destruct s; eauto. iFrame. iNext. iIntros (e2 σ2 efs) "% ?". iApply ("Hwp" with "[]"); eauto. Qed. @@ -225,72 +225,72 @@ Section ectx_lifting. iModIntro. iExists σ. iFrame "Hσ". by eauto. Qed. - Lemma ownP_lift_pure_head_step p E Φ e1 : + Lemma ownP_lift_pure_head_step s E Φ e1 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2 σ2 efs, head_step e1 σ1 e2 σ2 efs → σ1 = σ2) → (â–· ∀ e2 efs σ, ⌜head_step e1 σ e2 σ efs⌠→ - WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (???) "H". iApply ownP_lift_pure_step; eauto. - { by destruct p; auto. } + { by destruct s; auto. } iNext. iIntros (????). iApply "H"; eauto. Qed. - Lemma ownP_lift_atomic_head_step {p E Φ} e1 σ1 : + Lemma ownP_lift_atomic_head_step {s E Φ} e1 σ1 : to_val e1 = None → head_reducible e1 σ1 → â–· ownP σ1 ∗ â–· (∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 -∗ - default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (??) "[? H]". iApply ownP_lift_atomic_step; eauto. - { by destruct p; eauto. } + { by destruct s; eauto. } iFrame. iNext. iIntros (???) "% ?". iApply ("H" with "[]"); eauto. Qed. - Lemma ownP_lift_atomic_det_head_step {p E Φ e1} σ1 v2 σ2 efs : + Lemma ownP_lift_atomic_det_head_step {s E Φ e1} σ1 v2 σ2 efs : to_val e1 = None → head_reducible e1 σ1 → (∀ e2' σ2' efs', head_step e1 σ1 e2' σ2' efs' → σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → - â–· ownP σ1 ∗ â–· (ownP σ2 -∗ Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + â–· ownP σ1 ∗ â–· (ownP σ2 -∗ Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof. - by destruct p; eauto 10 using ownP_lift_atomic_det_step. + by destruct s; eauto 10 using ownP_lift_atomic_det_step. Qed. - Lemma ownP_lift_atomic_det_head_step_no_fork {p E e1} σ1 v2 σ2 : + Lemma ownP_lift_atomic_det_head_step_no_fork {s E e1} σ1 v2 σ2 : to_val e1 = None → head_reducible e1 σ1 → (∀ e2' σ2' efs', head_step e1 σ1 e2' σ2' efs' → σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → - {{{ â–· ownP σ1 }}} e1 @ p; E {{{ RET v2; ownP σ2 }}}. + {{{ â–· ownP σ1 }}} e1 @ s; E {{{ RET v2; ownP σ2 }}}. Proof. intros ???; apply ownP_lift_atomic_det_step_no_fork; eauto. - by destruct p; eauto. + by destruct s; eauto. Qed. - Lemma ownP_lift_pure_det_head_step {p E Φ} e1 e2 efs : + Lemma ownP_lift_pure_det_head_step {s E Φ} e1 e2 efs : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → - â–· (WP e2 @ p; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ p; ⊤ {{ _, True }}) - ⊢ WP e1 @ p; E {{ Φ }}. + â–· (WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (???) "H"; iApply wp_lift_pure_det_step; eauto. - by destruct p; eauto. + by destruct s; eauto. Qed. - Lemma ownP_lift_pure_det_head_step_no_fork {p E Φ} e1 e2 : + Lemma ownP_lift_pure_det_head_step_no_fork {s E Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → - â–· WP e2 @ p; E {{ Φ }} ⊢ WP e1 @ p; E {{ Φ }}. + â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (???) "H". iApply ownP_lift_pure_det_step_no_fork; eauto. - by destruct p; eauto. + by destruct s; eauto. Qed. End ectx_lifting. diff --git a/theories/program_logic/weakestpre.v b/theories/program_logic/weakestpre.v index 16154c0b56fd9de35d30fe7d4c68c3426ec6a80d..8be71d97bc3cf06e5f6aa74bf906887727c00ba8 100644 --- a/theories/program_logic/weakestpre.v +++ b/theories/program_logic/weakestpre.v @@ -11,26 +11,26 @@ Class irisG' (Λstate : Type) (Σ : gFunctors) := IrisG { }. Notation irisG Λ Σ := (irisG' (state Λ) Σ). -Definition wp_pre `{irisG Λ Σ} (p : pbit) +Definition wp_pre `{irisG Λ Σ} (s : stuckness) (wp : coPset -c> expr Λ -c> (val Λ -c> iProp Σ) -c> iProp Σ) : coPset -c> expr Λ -c> (val Λ -c> iProp Σ) -c> iProp Σ := λ E e1 Φ, match to_val e1 with | Some v => |={E}=> Φ v | None => ∀ σ1, - state_interp σ1 ={E,∅}=∗ ⌜if p then reducible e1 σ1 else True⌠∗ + state_interp σ1 ={E,∅}=∗ ⌜if s is not_stuck then reducible e1 σ1 else True⌠∗ â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ state_interp σ2 ∗ wp E e2 Φ ∗ [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) end%I. -Local Instance wp_pre_contractive `{irisG Λ Σ} p : Contractive (wp_pre p). +Local Instance wp_pre_contractive `{irisG Λ Σ} s : Contractive (wp_pre s). Proof. rewrite /wp_pre=> n wp wp' Hwp E e1 Φ. repeat (f_contractive || f_equiv); apply Hwp. Qed. -Definition wp_def `{irisG Λ Σ} p : - coPset → expr Λ → (val Λ → iProp Σ) → iProp Σ := fixpoint (wp_pre p). +Definition wp_def `{irisG Λ Σ} s : + coPset → expr Λ → (val Λ → iProp Σ) → iProp Σ := fixpoint (wp_pre s). Definition wp_aux : seal (@wp_def). by eexists. Qed. Definition wp := unseal wp_aux. Definition wp_eq : @wp = @wp_def := seal_eq wp_aux. @@ -38,44 +38,44 @@ Definition wp_eq : @wp = @wp_def := seal_eq wp_aux. Arguments wp {_ _ _} _ _ _%E _. Instance: Params (@wp) 6. -Notation "'WP' e @ p ; E {{ Φ } }" := (wp p E e%E Φ) +Notation "'WP' e @ s ; E {{ Φ } }" := (wp s E e%E Φ) (at level 20, e, Φ at level 200, - format "'[' 'WP' e '/' @ p ; E {{ Φ } } ']'") : uPred_scope. -Notation "'WP' e @ E {{ Φ } }" := (wp progress E e%E Φ) + format "'[' 'WP' e '/' @ s ; E {{ Φ } } ']'") : uPred_scope. +Notation "'WP' e @ E {{ Φ } }" := (wp not_stuck E e%E Φ) (at level 20, e, Φ at level 200, format "'[' 'WP' e '/' @ E {{ Φ } } ']'") : uPred_scope. -Notation "'WP' e @ E ? {{ Φ } }" := (wp noprogress E e%E Φ) +Notation "'WP' e @ E ? {{ Φ } }" := (wp maybe_stuck E e%E Φ) (at level 20, e, Φ at level 200, format "'[' 'WP' e '/' @ E ? {{ Φ } } ']'") : uPred_scope. -Notation "'WP' e {{ Φ } }" := (wp progress ⊤ e%E Φ) +Notation "'WP' e {{ Φ } }" := (wp not_stuck ⊤ e%E Φ) (at level 20, e, Φ at level 200, format "'[' 'WP' e '/' {{ Φ } } ']'") : uPred_scope. -Notation "'WP' e ? {{ Φ } }" := (wp noprogress ⊤ e%E Φ) +Notation "'WP' e ? {{ Φ } }" := (wp maybe_stuck ⊤ e%E Φ) (at level 20, e, Φ at level 200, format "'[' 'WP' e '/' ? {{ Φ } } ']'") : uPred_scope. -Notation "'WP' e @ p ; E {{ v , Q } }" := (wp p E e%E (λ v, Q)) +Notation "'WP' e @ s ; E {{ v , Q } }" := (wp s E e%E (λ v, Q)) (at level 20, e, Q at level 200, - format "'[' 'WP' e '/' @ p ; E {{ v , Q } } ']'") : uPred_scope. -Notation "'WP' e @ E {{ v , Q } }" := (wp progress E e%E (λ v, Q)) + format "'[' 'WP' e '/' @ s ; E {{ v , Q } } ']'") : uPred_scope. +Notation "'WP' e @ E {{ v , Q } }" := (wp not_stuck E e%E (λ v, Q)) (at level 20, e, Q at level 200, format "'[' 'WP' e '/' @ E {{ v , Q } } ']'") : uPred_scope. -Notation "'WP' e @ E ? {{ v , Q } }" := (wp noprogress E e%E (λ v, Q)) +Notation "'WP' e @ E ? {{ v , Q } }" := (wp maybe_stuck E e%E (λ v, Q)) (at level 20, e, Q at level 200, format "'[' 'WP' e '/' @ E ? {{ v , Q } } ']'") : uPred_scope. -Notation "'WP' e {{ v , Q } }" := (wp progress ⊤ e%E (λ v, Q)) +Notation "'WP' e {{ v , Q } }" := (wp not_stuck ⊤ e%E (λ v, Q)) (at level 20, e, Q at level 200, format "'[' 'WP' e '/' {{ v , Q } } ']'") : uPred_scope. -Notation "'WP' e ? {{ v , Q } }" := (wp noprogress ⊤ e%E (λ v, Q)) +Notation "'WP' e ? {{ v , Q } }" := (wp maybe_stuck ⊤ e%E (λ v, Q)) (at level 20, e, Q at level 200, format "'[' 'WP' e '/' ? {{ v , Q } } ']'") : uPred_scope. (* Texan triples *) -Notation "'{{{' P } } } e @ p ; E {{{ x .. y , 'RET' pat ; Q } } }" := +Notation "'{{{' P } } } e @ s ; E {{{ x .. y , 'RET' pat ; Q } } }" := (â–¡ ∀ Φ, - P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e @ p; E {{ Φ }})%I + P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e @ s; E {{ Φ }})%I (at level 20, x closed binder, y closed binder, - format "{{{ P } } } e @ p ; E {{{ x .. y , RET pat ; Q } } }") : uPred_scope. + format "{{{ P } } } e @ s ; E {{{ x .. y , RET pat ; Q } } }") : uPred_scope. Notation "'{{{' P } } } e @ E {{{ x .. y , 'RET' pat ; Q } } }" := (â–¡ ∀ Φ, P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E {{ Φ }})%I @@ -96,10 +96,10 @@ Notation "'{{{' P } } } e ? {{{ x .. y , 'RET' pat ; Q } } }" := P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e ?{{ Φ }})%I (at level 20, x closed binder, y closed binder, format "{{{ P } } } e ? {{{ x .. y , RET pat ; Q } } }") : uPred_scope. -Notation "'{{{' P } } } e @ p ; E {{{ 'RET' pat ; Q } } }" := - (â–¡ ∀ Φ, P -∗ â–· (Q -∗ Φ pat%V) -∗ WP e @ p; E {{ Φ }})%I +Notation "'{{{' P } } } e @ s ; E {{{ 'RET' pat ; Q } } }" := + (â–¡ ∀ Φ, P -∗ â–· (Q -∗ Φ pat%V) -∗ WP e @ s; E {{ Φ }})%I (at level 20, - format "{{{ P } } } e @ p ; E {{{ RET pat ; Q } } }") : uPred_scope. + format "{{{ P } } } e @ s ; E {{{ RET pat ; Q } } }") : uPred_scope. Notation "'{{{' P } } } e @ E {{{ 'RET' pat ; Q } } }" := (â–¡ ∀ Φ, P -∗ â–· (Q -∗ Φ pat%V) -∗ WP e @ E {{ Φ }})%I (at level 20, @@ -117,11 +117,11 @@ Notation "'{{{' P } } } e ? {{{ 'RET' pat ; Q } } }" := (at level 20, format "{{{ P } } } e ? {{{ RET pat ; Q } } }") : uPred_scope. -Notation "'{{{' P } } } e @ p ; E {{{ x .. y , 'RET' pat ; Q } } }" := +Notation "'{{{' P } } } e @ s ; E {{{ x .. y , 'RET' pat ; Q } } }" := (∀ Φ : _ → uPred _, - P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e @ p; E {{ Φ }}) + P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e @ s; E {{ Φ }}) (at level 20, x closed binder, y closed binder, - format "{{{ P } } } e @ p ; E {{{ x .. y , RET pat ; Q } } }") : C_scope. + format "{{{ P } } } e @ s ; E {{{ x .. y , RET pat ; Q } } }") : C_scope. Notation "'{{{' P } } } e @ E {{{ x .. y , 'RET' pat ; Q } } }" := (∀ Φ : _ → uPred _, P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e @ E {{ Φ }}) @@ -142,10 +142,10 @@ Notation "'{{{' P } } } e ? {{{ x .. y , 'RET' pat ; Q } } }" := P -∗ â–· (∀ x, .. (∀ y, Q -∗ Φ pat%V) .. ) -∗ WP e ?{{ Φ }}) (at level 20, x closed binder, y closed binder, format "{{{ P } } } e ? {{{ x .. y , RET pat ; Q } } }") : C_scope. -Notation "'{{{' P } } } e @ p ; E {{{ 'RET' pat ; Q } } }" := - (∀ Φ : _ → uPred _, P -∗ â–· (Q -∗ Φ pat%V) -∗ WP e @ p; E {{ Φ }}) +Notation "'{{{' P } } } e @ s ; E {{{ 'RET' pat ; Q } } }" := + (∀ Φ : _ → uPred _, P -∗ â–· (Q -∗ Φ pat%V) -∗ WP e @ s; E {{ Φ }}) (at level 20, - format "{{{ P } } } e @ p ; E {{{ RET pat ; Q } } }") : C_scope. + format "{{{ P } } } e @ s ; E {{{ RET pat ; Q } } }") : C_scope. Notation "'{{{' P } } } e @ E {{{ 'RET' pat ; Q } } }" := (∀ Φ : _ → uPred _, P -∗ â–· (Q -∗ Φ pat%V) -∗ WP e @ E {{ Φ }}) (at level 20, @@ -165,18 +165,18 @@ Notation "'{{{' P } } } e ? {{{ 'RET' pat ; Q } } }" := Section wp. Context `{irisG Λ Σ}. -Implicit Types p : pbit. +Implicit Types s : stuckness. Implicit Types P : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Implicit Types v : val Λ. Implicit Types e : expr Λ. (* Weakest pre *) -Lemma wp_unfold p E e Φ : WP e @ p; E {{ Φ }} ⊣⊢ wp_pre p (wp p) E e Φ. -Proof. rewrite wp_eq. apply (fixpoint_unfold (wp_pre p)). Qed. +Lemma wp_unfold s E e Φ : WP e @ s; E {{ Φ }} ⊣⊢ wp_pre s (wp s) E e Φ. +Proof. rewrite wp_eq. apply (fixpoint_unfold (wp_pre s)). Qed. -Global Instance wp_ne p E e n : - Proper (pointwise_relation _ (dist n) ==> dist n) (@wp Λ Σ _ p E e). +Global Instance wp_ne s E e n : + Proper (pointwise_relation _ (dist n) ==> dist n) (@wp Λ Σ _ s E e). Proof. revert e. induction (lt_wf n) as [n _ IH]=> e Φ Ψ HΦ. rewrite !wp_unfold /wp_pre. @@ -186,19 +186,19 @@ Proof. do 17 (f_contractive || f_equiv). apply IH; first lia. intros v. eapply dist_le; eauto with omega. Qed. -Global Instance wp_proper p E e : - Proper (pointwise_relation _ (≡) ==> (≡)) (@wp Λ Σ _ p E e). +Global Instance wp_proper s E e : + Proper (pointwise_relation _ (≡) ==> (≡)) (@wp Λ Σ _ s E e). Proof. by intros Φ Φ' ?; apply equiv_dist=>n; apply wp_ne=>v; apply equiv_dist. Qed. -Lemma wp_value' p E Φ v : Φ v ⊢ WP of_val v @ p; E {{ Φ }}. +Lemma wp_value' s E Φ v : Φ v ⊢ WP of_val v @ s; E {{ Φ }}. Proof. iIntros "HΦ". rewrite wp_unfold /wp_pre to_of_val. auto. Qed. -Lemma wp_value_inv p E Φ v : WP of_val v @ p; E {{ Φ }} ={E}=∗ Φ v. +Lemma wp_value_inv s E Φ v : WP of_val v @ s; E {{ Φ }} ={E}=∗ Φ v. Proof. by rewrite wp_unfold /wp_pre to_of_val. Qed. -Lemma wp_strong_mono p E1 E2 e Φ Ψ : - E1 ⊆ E2 → (∀ v, Φ v ={E2}=∗ Ψ v) ∗ WP e @ p; E1 {{ Φ }} ⊢ WP e @ p; E2 {{ Ψ }}. +Lemma wp_strong_mono s E1 E2 e Φ Ψ : + E1 ⊆ E2 → (∀ v, Φ v ={E2}=∗ Ψ v) ∗ WP e @ s; E1 {{ Φ }} ⊢ WP e @ s; E2 {{ Ψ }}. Proof. iIntros (?) "[HΦ H]". iLöb as "IH" forall (e). rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:?. @@ -210,8 +210,8 @@ Proof. iMod "Hclose" as "_". by iApply ("IH" with "HΦ"). Qed. -Lemma wp_forget_progress p E e Φ : - WP e @ p; E {{ Φ }} ⊢ WP e @ E ?{{ Φ }}. +Lemma wp_forget_not_stuck s E e Φ : + WP e @ s; E {{ Φ }} ⊢ WP e @ E ?{{ Φ }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|]; first iExact "H". @@ -224,18 +224,18 @@ Proof. iSplitL "Hef". by iApply ("IH" with "Hef"). exact: IH. Qed. -Lemma fupd_wp p E e Φ : (|={E}=> WP e @ p; E {{ Φ }}) ⊢ WP e @ p; E {{ Φ }}. +Lemma fupd_wp s E e Φ : (|={E}=> WP e @ s; E {{ Φ }}) ⊢ WP e @ s; E {{ Φ }}. Proof. rewrite wp_unfold /wp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?. { by iMod "H". } iIntros (σ1) "Hσ1". iMod "H". by iApply "H". Qed. -Lemma wp_fupd p E e Φ : WP e @ p; E {{ v, |={E}=> Φ v }} ⊢ WP e @ p; E {{ Φ }}. -Proof. iIntros "H". iApply (wp_strong_mono p E); try iFrame; auto. Qed. +Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} ⊢ WP e @ s; E {{ Φ }}. +Proof. iIntros "H". iApply (wp_strong_mono s E); try iFrame; auto. Qed. -Lemma wp_atomic' p E1 E2 e Φ : - StronglyAtomic e ∨ p = progress ∧ Atomic e → - (|={E1,E2}=> WP e @ p; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ p; E1 {{ Φ }}. +Lemma wp_atomic' s E1 E2 e Φ : + StronglyAtomic e ∨ s = not_stuck ∧ Atomic e → + (|={E1,E2}=> WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ s; E1 {{ Φ }}. Proof. iIntros (Hatomic) "H". rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|]. @@ -246,34 +246,34 @@ Proof. - destruct (Hstrong _ _ _ _ Hstep) as [v <-%of_to_val]. iMod ("H" with "[#]") as "($ & H & $)"; first done. iMod (wp_value_inv with "H") as ">H". by iApply wp_value'. - - destruct p; last done. iMod ("H" with "[//]") as "(Hphy & H & $)". + - destruct s; last done. iMod ("H" with "[//]") as "(Hphy & H & $)". rewrite !wp_unfold /wp_pre. destruct (to_val e2). + iDestruct "H" as ">> $". by iFrame. + iMod ("H" with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ?). by edestruct (Hweak _ _ _ _ Hstep). Qed. -Lemma wp_step_fupd p E1 E2 e P Φ : +Lemma wp_step_fupd s E1 E2 e P Φ : to_val e = None → E2 ⊆ E1 → - (|={E1,E2}â–·=> P) -∗ WP e @ p; E2 {{ v, P ={E1}=∗ Φ v }} -∗ WP e @ p; E1 {{ Φ }}. + (|={E1,E2}â–·=> P) -∗ WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }} -∗ WP e @ s; E1 {{ Φ }}. Proof. rewrite !wp_unfold /wp_pre. iIntros (-> ?) "HR H". iIntros (σ1) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". iModIntro; iNext; iIntros (e2 σ2 efs Hstep). iMod ("H" $! e2 σ2 efs with "[% //]") as "($ & H & $)". - iMod "HR". iModIntro. iApply (wp_strong_mono p E2); first done. + iMod "HR". iModIntro. iApply (wp_strong_mono s E2); first done. iSplitR "H"; last iExact "H". iIntros (v) "H". by iApply "H". Qed. -Lemma wp_bind K `{!LanguageCtx Λ K} p E e Φ : - WP e @ p; E {{ v, WP K (of_val v) @ p; E {{ Φ }} }} ⊢ WP K e @ p; E {{ Φ }}. +Lemma wp_bind K `{!LanguageCtx Λ K} s E e Φ : + WP e @ s; E {{ v, WP K (of_val v) @ s; E {{ Φ }} }} ⊢ WP K e @ s; E {{ Φ }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by iApply fupd_wp. } rewrite wp_unfold /wp_pre fill_not_val //. iIntros (σ1) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. - { iPureIntro. destruct p; last done. + { iPureIntro. destruct s; last done. unfold reducible in *. naive_solver eauto using fill_step. } iNext; iIntros (e2 σ2 efs Hstep). destruct (fill_step_inv e σ1 e2 σ2 efs) as (e2'&->&?); auto. @@ -281,86 +281,86 @@ Proof. by iApply "IH". Qed. -Lemma wp_bind_inv K `{!LanguageCtx Λ K} p E e Φ : - WP K e @ p; E {{ Φ }} ⊢ WP e @ p; E {{ v, WP K (of_val v) @ p; E {{ Φ }} }}. +Lemma wp_bind_inv K `{!LanguageCtx Λ K} s E e Φ : + WP K e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, WP K (of_val v) @ s; E {{ Φ }} }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by rewrite !wp_unfold /wp_pre. } rewrite fill_not_val //. iIntros (σ1) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. - { destruct p; eauto using reducible_fill. } + { destruct s; eauto using reducible_fill. } iNext; iIntros (e2 σ2 efs Hstep). iMod ("H" $! (K e2) σ2 efs with "[]") as "($ & H & $)"; eauto using fill_step. by iApply "IH". Qed. (** * Derived rules *) -Lemma wp_mono p E e Φ Ψ : (∀ v, Φ v ⊢ Ψ v) → WP e @ p; E {{ Φ }} ⊢ WP e @ p; E {{ Ψ }}. +Lemma wp_mono s E e Φ Ψ : (∀ v, Φ v ⊢ Ψ v) → WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}. Proof. - iIntros (HΦ) "H"; iApply (wp_strong_mono p E E); auto. + iIntros (HΦ) "H"; iApply (wp_strong_mono s E E); auto. iIntros "{$H}" (v) "?". by iApply HΦ. Qed. -Lemma wp_mask_mono p E1 E2 e Φ : E1 ⊆ E2 → WP e @ p; E1 {{ Φ }} ⊢ WP e @ p; E2 {{ Φ }}. -Proof. iIntros (?) "H"; iApply (wp_strong_mono p E1 E2); auto. iFrame; eauto. Qed. -Global Instance wp_mono' p E e : - Proper (pointwise_relation _ (⊢) ==> (⊢)) (@wp Λ Σ _ p E e). +Lemma wp_mask_mono s E1 E2 e Φ : E1 ⊆ E2 → WP e @ s; E1 {{ Φ }} ⊢ WP e @ s; E2 {{ Φ }}. +Proof. iIntros (?) "H"; iApply (wp_strong_mono s E1 E2); auto. iFrame; eauto. Qed. +Global Instance wp_mono' s E e : + Proper (pointwise_relation _ (⊢) ==> (⊢)) (@wp Λ Σ _ s E e). Proof. by intros Φ Φ' ?; apply wp_mono. Qed. -Lemma wp_value p E Φ e v `{!IntoVal e v} : Φ v ⊢ WP e @ p; E {{ Φ }}. +Lemma wp_value s E Φ e v `{!IntoVal e v} : Φ v ⊢ WP e @ s; E {{ Φ }}. Proof. intros; rewrite -(of_to_val e v) //; by apply wp_value'. Qed. -Lemma wp_value_fupd' p E Φ v : (|={E}=> Φ v) ⊢ WP of_val v @ p; E {{ Φ }}. +Lemma wp_value_fupd' s E Φ v : (|={E}=> Φ v) ⊢ WP of_val v @ s; E {{ Φ }}. Proof. intros. by rewrite -wp_fupd -wp_value'. Qed. -Lemma wp_value_fupd p E Φ e v `{!IntoVal e v} : - (|={E}=> Φ v) ⊢ WP e @ p; E {{ Φ }}. +Lemma wp_value_fupd s E Φ e v `{!IntoVal e v} : + (|={E}=> Φ v) ⊢ WP e @ s; E {{ Φ }}. Proof. intros. rewrite -wp_fupd -wp_value //. Qed. -Lemma wp_strong_atomic p E1 E2 e Φ : +Lemma wp_strong_atomic s E1 E2 e Φ : StronglyAtomic e → - (|={E1,E2}=> WP e @ p; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ p; E1 {{ Φ }}. + (|={E1,E2}=> WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ s; E1 {{ Φ }}. Proof. by eauto using wp_atomic'. Qed. Lemma wp_atomic E1 E2 e Φ : Atomic e → (|={E1,E2}=> WP e @ E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ E1 {{ Φ }}. Proof. by eauto using wp_atomic'. Qed. -Lemma wp_frame_l p E e Φ R : R ∗ WP e @ p; E {{ Φ }} ⊢ WP e @ p; E {{ v, R ∗ Φ v }}. -Proof. iIntros "[??]". iApply (wp_strong_mono p E E _ Φ); try iFrame; eauto. Qed. -Lemma wp_frame_r p E e Φ R : WP e @ p; E {{ Φ }} ∗ R ⊢ WP e @ p; E {{ v, Φ v ∗ R }}. -Proof. iIntros "[??]". iApply (wp_strong_mono p E E _ Φ); try iFrame; eauto. Qed. +Lemma wp_frame_l s E e Φ R : R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}. +Proof. iIntros "[??]". iApply (wp_strong_mono s E E _ Φ); try iFrame; eauto. Qed. +Lemma wp_frame_r s E e Φ R : WP e @ s; E {{ Φ }} ∗ R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}. +Proof. iIntros "[??]". iApply (wp_strong_mono s E E _ Φ); try iFrame; eauto. Qed. -Lemma wp_frame_step_l p E1 E2 e Φ R : +Lemma wp_frame_step_l s E1 E2 e Φ R : to_val e = None → E2 ⊆ E1 → - (|={E1,E2}â–·=> R) ∗ WP e @ p; E2 {{ Φ }} ⊢ WP e @ p; E1 {{ v, R ∗ Φ v }}. + (|={E1,E2}â–·=> R) ∗ WP e @ s; E2 {{ Φ }} ⊢ WP e @ s; E1 {{ v, R ∗ Φ v }}. Proof. iIntros (??) "[Hu Hwp]". iApply (wp_step_fupd with "Hu"); try done. iApply (wp_mono with "Hwp"). by iIntros (?) "$$". Qed. -Lemma wp_frame_step_r p E1 E2 e Φ R : +Lemma wp_frame_step_r s E1 E2 e Φ R : to_val e = None → E2 ⊆ E1 → - WP e @ p; E2 {{ Φ }} ∗ (|={E1,E2}â–·=> R) ⊢ WP e @ p; E1 {{ v, Φ v ∗ R }}. + WP e @ s; E2 {{ Φ }} ∗ (|={E1,E2}â–·=> R) ⊢ WP e @ s; E1 {{ v, Φ v ∗ R }}. Proof. rewrite [(WP _ @ _; _ {{ _ }} ∗ _)%I]comm; setoid_rewrite (comm _ _ R). apply wp_frame_step_l. Qed. -Lemma wp_frame_step_l' p E e Φ R : - to_val e = None → â–· R ∗ WP e @ p; E {{ Φ }} ⊢ WP e @ p; E {{ v, R ∗ Φ v }}. -Proof. iIntros (?) "[??]". iApply (wp_frame_step_l p E E); try iFrame; eauto. Qed. -Lemma wp_frame_step_r' p E e Φ R : - to_val e = None → WP e @ p; E {{ Φ }} ∗ â–· R ⊢ WP e @ p; E {{ v, Φ v ∗ R }}. -Proof. iIntros (?) "[??]". iApply (wp_frame_step_r p E E); try iFrame; eauto. Qed. - -Lemma wp_wand p E e Φ Ψ : - WP e @ p; E {{ Φ }} -∗ (∀ v, Φ v -∗ Ψ v) -∗ WP e @ p; E {{ Ψ }}. +Lemma wp_frame_step_l' s E e Φ R : + to_val e = None → â–· R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}. +Proof. iIntros (?) "[??]". iApply (wp_frame_step_l s E E); try iFrame; eauto. Qed. +Lemma wp_frame_step_r' s E e Φ R : + to_val e = None → WP e @ s; E {{ Φ }} ∗ â–· R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}. +Proof. iIntros (?) "[??]". iApply (wp_frame_step_r s E E); try iFrame; eauto. Qed. + +Lemma wp_wand s E e Φ Ψ : + WP e @ s; E {{ Φ }} -∗ (∀ v, Φ v -∗ Ψ v) -∗ WP e @ s; E {{ Ψ }}. Proof. - iIntros "Hwp H". iApply (wp_strong_mono p E); auto. + iIntros "Hwp H". iApply (wp_strong_mono s E); auto. iIntros "{$Hwp}" (?) "?". by iApply "H". Qed. -Lemma wp_wand_l p E e Φ Ψ : - (∀ v, Φ v -∗ Ψ v) ∗ WP e @ p; E {{ Φ }} ⊢ WP e @ p; E {{ Ψ }}. +Lemma wp_wand_l s E e Φ Ψ : + (∀ v, Φ v -∗ Ψ v) ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}. Proof. iIntros "[H Hwp]". iApply (wp_wand with "Hwp H"). Qed. -Lemma wp_wand_r p E e Φ Ψ : - WP e @ p; E {{ Φ }} ∗ (∀ v, Φ v -∗ Ψ v) ⊢ WP e @ p; E {{ Ψ }}. +Lemma wp_wand_r s E e Φ Ψ : + WP e @ s; E {{ Φ }} ∗ (∀ v, Φ v -∗ Ψ v) ⊢ WP e @ s; E {{ Ψ }}. Proof. iIntros "[Hwp H]". iApply (wp_wand with "Hwp H"). Qed. End wp. @@ -370,26 +370,26 @@ Section proofmode_classes. Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. - Global Instance frame_wp p p' E e R Φ Ψ : - (∀ v, Frame p' R (Φ v) (Ψ v)) → Frame p' R (WP e @ p; E {{ Φ }}) (WP e @ p; E {{ Ψ }}). + Global Instance frame_wp p s E e R Φ Ψ : + (∀ v, Frame p R (Φ v) (Ψ v)) → Frame p R (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Ψ }}). Proof. rewrite /Frame=> HR. rewrite wp_frame_l. apply wp_mono, HR. Qed. - Global Instance is_except_0_wp p E e Φ : IsExcept0 (WP e @ p; E {{ Φ }}). + Global Instance is_except_0_wp s E e Φ : IsExcept0 (WP e @ s; E {{ Φ }}). Proof. by rewrite /IsExcept0 -{2}fupd_wp -except_0_fupd -fupd_intro. Qed. - Global Instance elim_modal_bupd_wp p E e P Φ : - ElimModal (|==> P) P (WP e @ p; E {{ Φ }}) (WP e @ p; E {{ Φ }}). + Global Instance elim_modal_bupd_wp s E e P Φ : + ElimModal (|==> P) P (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Φ }}). Proof. by rewrite /ElimModal (bupd_fupd E) fupd_frame_r wand_elim_r fupd_wp. Qed. - Global Instance elim_modal_fupd_wp p E e P Φ : - ElimModal (|={E}=> P) P (WP e @ p; E {{ Φ }}) (WP e @ p; E {{ Φ }}). + Global Instance elim_modal_fupd_wp s E e P Φ : + ElimModal (|={E}=> P) P (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Φ }}). Proof. by rewrite /ElimModal fupd_frame_r wand_elim_r fupd_wp. Qed. (* lower precedence, if possible, it should persistently pick elim_upd_fupd_wp *) Global Instance elim_modal_fupd_wp_strong_atomic E1 E2 e P Φ : StronglyAtomic e → ElimModal (|={E1,E2}=> P) P - (WP e @ p; E1 {{ Φ }}) (WP e @ p; E2 {{ v, |={E2,E1}=> Φ v }})%I | 100. + (WP e @ s; E1 {{ Φ }}) (WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }})%I | 100. Proof. intros. by rewrite /ElimModal fupd_frame_r wand_elim_r wp_strong_atomic. Qed. (* lower precedence than elim_modal_fupd_wp_strong_atomic (for no good reason) *) diff --git a/theories/tests/heap_lang.v b/theories/tests/heap_lang.v index 256a93e2f9e82d3cdf810cccbd00b882821cca4f..2771e3101b45f042b7d9a192688028b0fca54c30 100644 --- a/theories/tests/heap_lang.v +++ b/theories/tests/heap_lang.v @@ -86,5 +86,5 @@ Section LiftingTests. Proof. iIntros "". wp_apply Pred_spec. wp_let. by wp_apply Pred_spec. Qed. End LiftingTests. -Lemma heap_e_adequate σ : adequate progress heap_e σ (= #2). +Lemma heap_e_adequate σ : adequate not_stuck heap_e σ (= #2). Proof. eapply (heap_adequacy heapΣ)=> ?. by apply heap_e_spec. Qed.