From 39967f223cb2fc9d3ca973eb0af3808debc90853 Mon Sep 17 00:00:00 2001 From: Jacques-Henri Jourdan <jacques-henri.jourdan@normalesup.org> Date: Wed, 13 Dec 2017 18:24:58 +0100 Subject: [PATCH] Renaming : morphism -> embedding. --- theories/bi/derived_laws.v | 142 +++++++++++++-------------- theories/bi/interface.v | 46 ++++----- theories/bi/monpred.v | 20 ++-- theories/proofmode/class_instances.v | 106 ++++++++++---------- theories/proofmode/tactics.v | 4 +- 5 files changed, 159 insertions(+), 159 deletions(-) diff --git a/theories/bi/derived_laws.v b/theories/bi/derived_laws.v index 341803b11..a929f62a5 100644 --- a/theories/bi/derived_laws.v +++ b/theories/bi/derived_laws.v @@ -2297,106 +2297,106 @@ only be used at the leaves of the proof search tree, i.e. when the premise of the hint can be derived from just the current context. *) Hint Immediate bi.plain_persistent : typeclass_instances. -(* BI morphisms *) -Section bi_morphims. - Context `{BiMorphism PROP1 PROP2}. +(* BI embeddings *) +Section bi_embedding. + Context `{BiEmbedding PROP1 PROP2}. - Global Instance bi_mor_proper : Proper ((≡) ==> (≡)) bi_embedding. + Global Instance bi_embed_proper : Proper ((≡) ==> (≡)) bi_embed. Proof. apply (ne_proper _). Qed. - Global Instance bi_mor_mono_flip : Proper (flip (⊢) ==> flip (⊢)) bi_embedding. + Global Instance bi_embed_mono_flip : Proper (flip (⊢) ==> flip (⊢)) bi_embed. Proof. solve_proper. Qed. - Global Instance bi_mor_inj : Inj (≡) (≡) bi_embedding. + Global Instance bi_embed_inj : Inj (≡) (≡) bi_embed. Proof. - intros ?? EQ. apply bi.equiv_spec, conj; apply (inj bi_embedding); + intros ?? EQ. apply bi.equiv_spec, conj; apply (inj bi_embed); rewrite EQ //. Qed. - Lemma bi_mor_valid (P : PROP1) : @bi_embedding PROP1 PROP2 _ P ↔ P. + Lemma bi_embed_valid (P : PROP1) : @bi_embed PROP1 PROP2 _ P ↔ P. Proof. - by rewrite /bi_valid -bi_mor_emp; split=>?; [apply (inj bi_embedding)|f_equiv]. + by rewrite /bi_valid -bi_embed_emp; split=>?; [apply (inj bi_embed)|f_equiv]. Qed. - Lemma bi_mor_forall A (Φ : A → PROP1) : ⎡∀ x, Φ x⎤ ⊣⊢ ∀ x, ⎡Φ x⎤. + Lemma bi_embed_forall A (Φ : A → PROP1) : ⎡∀ x, Φ x⎤ ⊣⊢ ∀ x, ⎡Φ x⎤. Proof. - apply bi.equiv_spec; split; [|apply bi_mor_forall_2]. + apply bi.equiv_spec; split; [|apply bi_embed_forall_2]. apply bi.forall_intro=>?. by rewrite bi.forall_elim. Qed. - Lemma bi_mor_exist A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊣⊢ ∃ x, ⎡Φ x⎤. + Lemma bi_embed_exist A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊣⊢ ∃ x, ⎡Φ x⎤. Proof. - apply bi.equiv_spec; split; [apply bi_mor_exist_1|]. + apply bi.equiv_spec; split; [apply bi_embed_exist_1|]. apply bi.exist_elim=>?. by rewrite -bi.exist_intro. Qed. - Lemma bi_mor_and P Q : ⎡P ∧ Q⎤ ⊣⊢ ⎡P⎤ ∧ ⎡Q⎤. - Proof. rewrite !bi.and_alt bi_mor_forall. by f_equiv=>-[]. Qed. - Lemma bi_mor_or P Q : ⎡P ∨ Q⎤ ⊣⊢ ⎡P⎤ ∨ ⎡Q⎤. - Proof. rewrite !bi.or_alt bi_mor_exist. by f_equiv=>-[]. Qed. - Lemma bi_mor_impl P Q : ⎡P → Q⎤ ⊣⊢ (⎡P⎤ → ⎡Q⎤). + Lemma bi_embed_and P Q : ⎡P ∧ Q⎤ ⊣⊢ ⎡P⎤ ∧ ⎡Q⎤. + Proof. rewrite !bi.and_alt bi_embed_forall. by f_equiv=>-[]. Qed. + Lemma bi_embed_or P Q : ⎡P ∨ Q⎤ ⊣⊢ ⎡P⎤ ∨ ⎡Q⎤. + Proof. rewrite !bi.or_alt bi_embed_exist. by f_equiv=>-[]. Qed. + Lemma bi_embed_impl P Q : ⎡P → Q⎤ ⊣⊢ (⎡P⎤ → ⎡Q⎤). Proof. - apply bi.equiv_spec; split; [|apply bi_mor_impl_2]. - apply bi.impl_intro_l. by rewrite -bi_mor_and bi.impl_elim_r. + apply bi.equiv_spec; split; [|apply bi_embed_impl_2]. + apply bi.impl_intro_l. by rewrite -bi_embed_and bi.impl_elim_r. Qed. - Lemma bi_mor_wand P Q : ⎡P -∗ Q⎤ ⊣⊢ (⎡P⎤ -∗ ⎡Q⎤). + Lemma bi_embed_wand P Q : ⎡P -∗ Q⎤ ⊣⊢ (⎡P⎤ -∗ ⎡Q⎤). Proof. - apply bi.equiv_spec; split; [|apply bi_mor_wand_2]. - apply bi.wand_intro_l. by rewrite -bi_mor_sep bi.wand_elim_r. + apply bi.equiv_spec; split; [|apply bi_embed_wand_2]. + apply bi.wand_intro_l. by rewrite -bi_embed_sep bi.wand_elim_r. Qed. - Lemma bi_mor_pure φ : ⎡⌜φâŒâŽ¤ ⊣⊢ ⌜φâŒ. + Lemma bi_embed_pure φ : ⎡⌜φâŒâŽ¤ ⊣⊢ ⌜φâŒ. Proof. - rewrite (@bi.pure_alt PROP1) (@bi.pure_alt PROP2) bi_mor_exist. + rewrite (@bi.pure_alt PROP1) (@bi.pure_alt PROP2) bi_embed_exist. do 2 f_equiv. apply bi.equiv_spec. split; [apply bi.True_intro|]. - rewrite -(_ : (emp → emp : PROP1) ⊢ True) ?bi_mor_impl; + rewrite -(_ : (emp → emp : PROP1) ⊢ True) ?bi_embed_impl; last apply bi.True_intro. apply bi.impl_intro_l. by rewrite right_id. Qed. - Lemma bi_mor_internal_eq (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊣⊢ x ≡ y. + Lemma bi_embed_internal_eq (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊣⊢ x ≡ y. Proof. - apply bi.equiv_spec; split; [apply bi_mor_internal_eq_1|]. + apply bi.equiv_spec; split; [apply bi_embed_internal_eq_1|]. etrans; [apply (bi.internal_eq_rewrite x y (λ y, ⎡x ≡ y⎤%I)); solve_proper|]. - rewrite -(bi.internal_eq_refl True%I) bi_mor_pure. + rewrite -(bi.internal_eq_refl True%I) bi_embed_pure. eapply bi.impl_elim; [done|]. apply bi.True_intro. Qed. - Lemma bi_mor_iff P Q : ⎡P ↔ Q⎤ ⊣⊢ (⎡P⎤ ↔ ⎡Q⎤). - Proof. by rewrite bi_mor_and !bi_mor_impl. Qed. - Lemma bi_mor_wand_iff P Q : ⎡P ∗-∗ Q⎤ ⊣⊢ (⎡P⎤ ∗-∗ ⎡Q⎤). - Proof. by rewrite bi_mor_and !bi_mor_wand. Qed. - Lemma bi_mor_affinely P : ⎡bi_affinely P⎤ ⊣⊢ bi_affinely ⎡P⎤. - Proof. by rewrite bi_mor_and bi_mor_emp. Qed. - Lemma bi_mor_absorbingly P : ⎡bi_absorbingly P⎤ ⊣⊢ bi_absorbingly ⎡P⎤. - Proof. by rewrite bi_mor_sep bi_mor_pure. Qed. - Lemma bi_mor_plainly_if P b : ⎡bi_plainly_if b P⎤ ⊣⊢ bi_plainly_if b ⎡P⎤. - Proof. destruct b; auto using bi_mor_plainly. Qed. - Lemma bi_mor_persistently_if P b : + Lemma bi_embed_iff P Q : ⎡P ↔ Q⎤ ⊣⊢ (⎡P⎤ ↔ ⎡Q⎤). + Proof. by rewrite bi_embed_and !bi_embed_impl. Qed. + Lemma bi_embed_wand_iff P Q : ⎡P ∗-∗ Q⎤ ⊣⊢ (⎡P⎤ ∗-∗ ⎡Q⎤). + Proof. by rewrite bi_embed_and !bi_embed_wand. Qed. + Lemma bi_embed_affinely P : ⎡bi_affinely P⎤ ⊣⊢ bi_affinely ⎡P⎤. + Proof. by rewrite bi_embed_and bi_embed_emp. Qed. + Lemma bi_embed_absorbingly P : ⎡bi_absorbingly P⎤ ⊣⊢ bi_absorbingly ⎡P⎤. + Proof. by rewrite bi_embed_sep bi_embed_pure. Qed. + Lemma bi_embed_plainly_if P b : ⎡bi_plainly_if b P⎤ ⊣⊢ bi_plainly_if b ⎡P⎤. + Proof. destruct b; auto using bi_embed_plainly. Qed. + Lemma bi_embed_persistently_if P b : ⎡bi_persistently_if b P⎤ ⊣⊢ bi_persistently_if b ⎡P⎤. - Proof. destruct b; auto using bi_mor_persistently. Qed. - Lemma bi_mor_affinely_if P b : ⎡bi_affinely_if b P⎤ ⊣⊢ bi_affinely_if b ⎡P⎤. - Proof. destruct b; simpl; auto using bi_mor_affinely. Qed. - Lemma bi_mor_hforall {As} (Φ : himpl As PROP1): - ⎡bi_hforall Φ⎤ ⊣⊢ bi_hforall (hcompose bi_embedding Φ). - Proof. induction As=>//. rewrite /= bi_mor_forall. by do 2 f_equiv. Qed. - Lemma bi_mor_hexist {As} (Φ : himpl As PROP1): - ⎡bi_hexist Φ⎤ ⊣⊢ bi_hexist (hcompose bi_embedding Φ). - Proof. induction As=>//. rewrite /= bi_mor_exist. by do 2 f_equiv. Qed. - - Global Instance bi_mor_plain P : Plain P → Plain ⎡P⎤. - Proof. intros ?. by rewrite /Plain -bi_mor_plainly -plain. Qed. - Global Instance bi_mor_persistent P : Persistent P → Persistent ⎡P⎤. - Proof. intros ?. by rewrite /Persistent -bi_mor_persistently -persistent. Qed. - Global Instance bi_mor_affine P : Affine P → Affine ⎡P⎤. - Proof. intros ?. by rewrite /Affine (affine P) bi_mor_emp. Qed. - Global Instance bi_mor_absorbing P : Absorbing P → Absorbing ⎡P⎤. - Proof. intros ?. by rewrite /Absorbing -bi_mor_absorbingly absorbing. Qed. -End bi_morphims. - -Section sbi_morphims. - Context `{SbiMorphism PROP1 PROP2}. - - Lemma sbi_mor_laterN n P : ⎡▷^n P⎤ ⊣⊢ â–·^n ⎡P⎤. - Proof. induction n=>//=. rewrite sbi_mor_later. by f_equiv. Qed. - Lemma sbi_mor_except_0 P : ⎡◇ P⎤ ⊣⊢ â—‡ ⎡P⎤. - Proof. by rewrite bi_mor_or sbi_mor_later bi_mor_pure. Qed. - - Global Instance sbi_mor_timeless P : Timeless P → Timeless ⎡P⎤. + Proof. destruct b; auto using bi_embed_persistently. Qed. + Lemma bi_embed_affinely_if P b : ⎡bi_affinely_if b P⎤ ⊣⊢ bi_affinely_if b ⎡P⎤. + Proof. destruct b; simpl; auto using bi_embed_affinely. Qed. + Lemma bi_embed_hforall {As} (Φ : himpl As PROP1): + ⎡bi_hforall Φ⎤ ⊣⊢ bi_hforall (hcompose bi_embed Φ). + Proof. induction As=>//. rewrite /= bi_embed_forall. by do 2 f_equiv. Qed. + Lemma bi_embed_hexist {As} (Φ : himpl As PROP1): + ⎡bi_hexist Φ⎤ ⊣⊢ bi_hexist (hcompose bi_embed Φ). + Proof. induction As=>//. rewrite /= bi_embed_exist. by do 2 f_equiv. Qed. + + Global Instance bi_embed_plain P : Plain P → Plain ⎡P⎤. + Proof. intros ?. by rewrite /Plain -bi_embed_plainly -plain. Qed. + Global Instance bi_embed_persistent P : Persistent P → Persistent ⎡P⎤. + Proof. intros ?. by rewrite /Persistent -bi_embed_persistently -persistent. Qed. + Global Instance bi_embed_affine P : Affine P → Affine ⎡P⎤. + Proof. intros ?. by rewrite /Affine (affine P) bi_embed_emp. Qed. + Global Instance bi_embed_absorbing P : Absorbing P → Absorbing ⎡P⎤. + Proof. intros ?. by rewrite /Absorbing -bi_embed_absorbingly absorbing. Qed. +End bi_embedding. + +Section sbi_embedding. + Context `{SbiEmbedding PROP1 PROP2}. + + Lemma sbi_embed_laterN n P : ⎡▷^n P⎤ ⊣⊢ â–·^n ⎡P⎤. + Proof. induction n=>//=. rewrite sbi_embed_later. by f_equiv. Qed. + Lemma sbi_embed_except_0 P : ⎡◇ P⎤ ⊣⊢ â—‡ ⎡P⎤. + Proof. by rewrite bi_embed_or sbi_embed_later bi_embed_pure. Qed. + + Global Instance sbi_embed_timeless P : Timeless P → Timeless ⎡P⎤. Proof. - intros ?. by rewrite /Timeless -sbi_mor_except_0 -sbi_mor_later timeless. + intros ?. by rewrite /Timeless -sbi_embed_except_0 -sbi_embed_later timeless. Qed. -End sbi_morphims. \ No newline at end of file +End sbi_embedding. \ No newline at end of file diff --git a/theories/bi/interface.v b/theories/bi/interface.v index c76cbee96..9f8f611ac 100644 --- a/theories/bi/interface.v +++ b/theories/bi/interface.v @@ -526,29 +526,29 @@ End sbi_laws. End bi. (* Typically, embeddings are used to *define* the destination BI. - Hence we cannot ask it to be a morphism. *) -Class BiEmbedding (A B : Type) := bi_embedding : A → B. -Arguments bi_embedding {_ _ _} _%I : simpl never. -Notation "⎡ P ⎤" := (bi_embedding P) : bi_scope. -Instance: Params (@bi_embedding) 3. -Typeclasses Opaque bi_embedding. - -Class BiMorphism (PROP1 PROP2 : bi) `{BiEmbedding PROP1 PROP2} := { - bi_mor_ne :> NonExpansive bi_embedding; - bi_mor_mono :> Proper ((⊢) ==> (⊢)) bi_embedding; - bi_mor_entails_inj :> Inj (⊢) (⊢) bi_embedding; - bi_mor_emp : ⎡emp⎤ ⊣⊢ emp; - bi_mor_impl_2 P Q : (⎡P⎤ → ⎡Q⎤) ⊢ ⎡P → Q⎤; - bi_mor_forall_2 A (Φ : A → PROP1) : (∀ x, ⎡Φ x⎤) ⊢ ⎡∀ x, Φ x⎤; - bi_mor_exist_1 A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊢ ∃ x, ⎡Φ x⎤; - bi_mor_internal_eq_1 (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊢ x ≡ y; - bi_mor_sep P Q : ⎡P ∗ Q⎤ ⊣⊢ ⎡P⎤ ∗ ⎡Q⎤; - bi_mor_wand_2 P Q : (⎡P⎤ -∗ ⎡Q⎤) ⊢ ⎡P -∗ Q⎤; - bi_mor_plainly P : ⎡bi_plainly P⎤ ⊣⊢ bi_plainly ⎡P⎤; - bi_mor_persistently P : ⎡bi_persistently P⎤ ⊣⊢ bi_persistently ⎡P⎤ + Hence we cannot ask it to verify the properties of embeddings. *) +Class BiEmbed (A B : Type) := bi_embed : A → B. +Arguments bi_embed {_ _ _} _%I : simpl never. +Notation "⎡ P ⎤" := (bi_embed P) : bi_scope. +Instance: Params (@bi_embed) 3. +Typeclasses Opaque bi_embed. + +Class BiEmbedding (PROP1 PROP2 : bi) `{BiEmbed PROP1 PROP2} := { + bi_embed_ne :> NonExpansive bi_embed; + bi_embed_mono :> Proper ((⊢) ==> (⊢)) bi_embed; + bi_embed_entails_inj :> Inj (⊢) (⊢) bi_embed; + bi_embed_emp : ⎡emp⎤ ⊣⊢ emp; + bi_embed_impl_2 P Q : (⎡P⎤ → ⎡Q⎤) ⊢ ⎡P → Q⎤; + bi_embed_forall_2 A (Φ : A → PROP1) : (∀ x, ⎡Φ x⎤) ⊢ ⎡∀ x, Φ x⎤; + bi_embed_exist_1 A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊢ ∃ x, ⎡Φ x⎤; + bi_embed_internal_eq_1 (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊢ x ≡ y; + bi_embed_sep P Q : ⎡P ∗ Q⎤ ⊣⊢ ⎡P⎤ ∗ ⎡Q⎤; + bi_embed_wand_2 P Q : (⎡P⎤ -∗ ⎡Q⎤) ⊢ ⎡P -∗ Q⎤; + bi_embed_plainly P : ⎡bi_plainly P⎤ ⊣⊢ bi_plainly ⎡P⎤; + bi_embed_persistently P : ⎡bi_persistently P⎤ ⊣⊢ bi_persistently ⎡P⎤ }. -Class SbiMorphism (PROP1 PROP2 : sbi) `{BiEmbedding PROP1 PROP2} := { - sbi_mor_bi_mor :> BiMorphism PROP1 PROP2; - sbi_mor_later P : ⎡▷ P⎤ ⊣⊢ â–· ⎡P⎤ +Class SbiEmbedding (PROP1 PROP2 : sbi) `{BiEmbed PROP1 PROP2} := { + sbi_embed_bi_embed :> BiEmbedding PROP1 PROP2; + sbi_embed_later P : ⎡▷ P⎤ ⊣⊢ â–· ⎡P⎤ }. diff --git a/theories/bi/monpred.v b/theories/bi/monpred.v index 6aca7b936..3e6cbf6b5 100644 --- a/theories/bi/monpred.v +++ b/theories/bi/monpred.v @@ -116,10 +116,10 @@ Program Definition monPred_upclosed (Φ : I → PROP) : monPred := MonPred (λ i, (∀ j, ⌜i ⊑ j⌠→ Φ j)%I) _. Next Obligation. solve_proper. Qed. -Definition monPred_ipure_def (P : PROP) : monPred := MonPred (λ _, P) _. -Definition monPred_ipure_aux : seal (@monPred_ipure_def). by eexists. Qed. -Global Instance monPred_ipure : BiEmbedding PROP monPred := unseal monPred_ipure_aux. -Definition monPred_ipure_eq : bi_embedding = _ := seal_eq _. +Definition monPred_embed_def (P : PROP) : monPred := MonPred (λ _, P) _. +Definition monPred_embed_aux : seal (@monPred_embed_def). by eexists. Qed. +Global Instance monPred_embed : BiEmbed PROP monPred := unseal monPred_embed_aux. +Definition monPred_embed_eq : bi_embed = _ := seal_eq _. Definition monPred_pure (φ : Prop) : monPred := ⎡⌜φâŒâŽ¤%I. Definition monPred_emp : monPred := ⎡emp⎤%I. @@ -215,7 +215,7 @@ Definition unseal_eqs := @monPred_forall_eq, @monPred_exist_eq, @monPred_internal_eq_eq, @monPred_sep_eq, @monPred_wand_eq, @monPred_persistently_eq, @monPred_later_eq, - @monPred_in_eq, @monPred_all_eq, @monPred_ipure_eq). + @monPred_in_eq, @monPred_all_eq, @monPred_embed_eq). Ltac unseal := unfold bi_affinely, bi_absorbingly, sbi_except_0, bi_pure, bi_emp, monPred_upclosed, bi_and, bi_or, bi_impl, bi_forall, bi_exist, @@ -464,8 +464,8 @@ Proof. by apply affine, bi.forall_affine. Qed. -Global Instance monPred_ipure_bi_mor : - Inhabited I → @BiMorphism PROP (monPredI I PROP) bi_embedding. +Global Instance monPred_bi_embedding : + Inhabited I → @BiEmbedding PROP (monPredI I PROP) bi_embed. Proof. split; try apply _; unseal; try done. - move =>?? /= [/(_ inhabitant) ?] //. @@ -485,7 +485,7 @@ Implicit Types P Q : monPred I PROP. Global Instance monPred_car_timeless P i : Timeless P → Timeless (P i). Proof. move => [] /(_ i). unfold Timeless. by unseal. Qed. -Global Instance monPred_ipure_timeless (P : PROP) : +Global Instance monPred_embed_timeless (P : PROP) : Timeless P → @Timeless (monPredSI I PROP) ⎡P⎤%I. Proof. intros. split => ? /=. by unseal. Qed. Global Instance monPred_in_timeless i0 : Timeless (@monPred_in I PROP i0). @@ -497,7 +497,7 @@ Proof. by apply timeless, bi.forall_timeless. Qed. -Global Instance monPred_ipure_sbi_mor : - Inhabited I → @SbiMorphism PROP (monPredSI I PROP) bi_embedding. +Global Instance monPred_sbi_embedding : + Inhabited I → @SbiEmbedding PROP (monPredSI I PROP) bi_embed. Proof. split; try apply _. by unseal. Qed. End sbi_facts. diff --git a/theories/proofmode/class_instances.v b/theories/proofmode/class_instances.v index 29fda3a07..c9f39a47c 100644 --- a/theories/proofmode/class_instances.v +++ b/theories/proofmode/class_instances.v @@ -115,9 +115,9 @@ Proof. rewrite /IntoPure=> ->. apply: plainly_elim. Qed. Global Instance into_pure_persistently P φ : IntoPure P φ → IntoPure (bi_persistently P) φ. Proof. rewrite /IntoPure=> ->. apply: persistently_elim. Qed. -Global Instance into_pure_morphism `{BiMorphism PROP PROP'} P φ : +Global Instance into_pure_embed `{BiEmbedding PROP PROP'} P φ : IntoPure P φ → IntoPure ⎡P⎤ φ. -Proof. rewrite /IntoPure=> ->. by rewrite bi_mor_pure. Qed. +Proof. rewrite /IntoPure=> ->. by rewrite bi_embed_pure. Qed. (* FromPure *) Global Instance from_pure_pure φ : @FromPure PROP ⌜φ⌠φ. @@ -164,9 +164,9 @@ Global Instance from_pure_affinely P φ `{!Affine P} : Proof. by rewrite /FromPure affine_affinely. Qed. Global Instance from_pure_absorbingly P φ : FromPure P φ → FromPure (bi_absorbingly P) φ. Proof. rewrite /FromPure=> <-. by rewrite absorbingly_pure. Qed. -Global Instance from_pure_morphism `{BiMorphism PROP PROP'} P φ : +Global Instance from_pure_embed `{BiEmbedding PROP PROP'} P φ : FromPure P φ → FromPure ⎡P⎤ φ. -Proof. rewrite /FromPure=> <-. by rewrite bi_mor_pure. Qed. +Proof. rewrite /FromPure=> <-. by rewrite bi_embed_pure. Qed. (* IntoInternalEq *) Global Instance into_internal_eq_internal_eq {A : ofeT} (x y : A) : @@ -184,10 +184,10 @@ Proof. rewrite /IntoInternalEq=> ->. by rewrite plainly_elim. Qed. Global Instance into_internal_eq_persistently {A : ofeT} (x y : A) P : IntoInternalEq P x y → IntoInternalEq (bi_persistently P) x y. Proof. rewrite /IntoInternalEq=> ->. by rewrite persistently_elim. Qed. -Global Instance into_internal_eq_morphism - `{BiMorphism PROP PROP'} {A : ofeT} (x y : A) P : +Global Instance into_internal_eq_embed + `{BiEmbedding PROP PROP'} {A : ofeT} (x y : A) P : IntoInternalEq P x y → IntoInternalEq ⎡P⎤ x y. -Proof. rewrite /IntoInternalEq=> ->. by rewrite bi_mor_internal_eq. Qed. +Proof. rewrite /IntoInternalEq=> ->. by rewrite bi_embed_internal_eq. Qed. (* IntoPersistent *) Global Instance into_persistent_persistently p P Q : @@ -199,10 +199,10 @@ Qed. Global Instance into_persistent_affinely p P Q : IntoPersistent p P Q → IntoPersistent p (bi_affinely P) Q | 0. Proof. rewrite /IntoPersistent /= => <-. by rewrite affinely_elim. Qed. -Global Instance into_persistent_morphism `{BiMorphism PROP PROP'} p P Q : +Global Instance into_persistent_embed `{BiEmbedding PROP PROP'} p P Q : IntoPersistent p P Q → IntoPersistent p ⎡P⎤ ⎡Q⎤ | 0. Proof. - rewrite /IntoPersistent -bi_mor_persistently -bi_mor_persistently_if=> -> //. + rewrite /IntoPersistent -bi_embed_persistently -bi_embed_persistently_if=> -> //. Qed. Global Instance into_persistent_here P : IntoPersistent true P P | 1. Proof. by rewrite /IntoPersistent. Qed. @@ -231,11 +231,11 @@ Global Instance from_always_affinely a pe pl P Q : Proof. rewrite /FromAlways /= => <-. destruct a; by rewrite /= ?affinely_idemp. Qed. -Global Instance from_always_morphism `{BiMorphism PROP PROP'} a pe pl P Q : +Global Instance from_always_embed `{BiEmbedding PROP PROP'} a pe pl P Q : FromAlways a pe pl P Q → FromAlways a pe pl ⎡P⎤ ⎡Q⎤ | 0. Proof. rewrite /FromAlways=><-. - by rewrite bi_mor_affinely_if bi_mor_persistently_if bi_mor_plainly_if. + by rewrite bi_embed_affinely_if bi_embed_persistently_if bi_embed_plainly_if. Qed. (* IntoWand *) @@ -323,11 +323,11 @@ Proof. by rewrite /IntoWand /= persistently_idemp. Qed. Global Instance into_wand_persistently_false `{!BiAffine PROP} q R P Q : IntoWand false q R P Q → IntoWand false q (bi_persistently R) P Q. Proof. by rewrite /IntoWand persistently_elim. Qed. -Global Instance into_wand_Morphism `{BiMorphism PROP PROP'} p q R P Q : +Global Instance into_wand_embed `{BiEmbedding PROP PROP'} p q R P Q : IntoWand p q R P Q → IntoWand p q ⎡R⎤ ⎡P⎤ ⎡Q⎤. Proof. - rewrite /IntoWand -!bi_mor_persistently_if -!bi_mor_affinely_if - -bi_mor_wand => -> //. + rewrite /IntoWand -!bi_embed_persistently_if -!bi_embed_affinely_if + -bi_embed_wand => -> //. Qed. (* FromAnd *) @@ -370,9 +370,9 @@ Global Instance from_and_persistently_sep P Q1 Q2 : FromAnd (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2) | 11. Proof. rewrite /FromAnd=> <-. by rewrite -persistently_and persistently_and_sep. Qed. -Global Instance from_and_morphism `{BiMorphism PROP PROP'} P Q1 Q2 : +Global Instance from_and_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : FromAnd P Q1 Q2 → FromAnd ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromAnd -bi_mor_and => <-. Qed. +Proof. by rewrite /FromAnd -bi_embed_and => <-. Qed. Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat → A → PROP) x l : Persistent (Φ 0 x) → @@ -410,9 +410,9 @@ Global Instance from_sep_persistently P Q1 Q2 : FromSep (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2). Proof. rewrite /FromSep=> <-. by rewrite persistently_sep_2. Qed. -Global Instance from_sep_morphism `{BiMorphism PROP PROP'} P Q1 Q2 : +Global Instance from_sep_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : FromSep P Q1 Q2 → FromSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromSep -bi_mor_sep => <-. Qed. +Proof. by rewrite /FromSep -bi_embed_sep => <-. Qed. Global Instance from_sep_big_sepL_cons {A} (Φ : nat → A → PROP) x l : FromSep ([∗ list] k ↦ y ∈ x :: l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l, Φ (S k) y). @@ -471,11 +471,11 @@ Proof. - by rewrite -persistently_and !persistently_idemp. - intros ->. by rewrite persistently_and. Qed. -Global Instance into_and_morphism `{BiMorphism PROP PROP'} p P Q1 Q2 : +Global Instance into_and_embed `{BiEmbedding PROP PROP'} p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. Proof. - rewrite /IntoAnd -bi_mor_and -!bi_mor_persistently_if - -!bi_mor_affinely_if=> -> //. + rewrite /IntoAnd -bi_embed_and -!bi_embed_persistently_if + -!bi_embed_affinely_if=> -> //. Qed. (* IntoSep *) @@ -510,9 +510,9 @@ Qed. Global Instance into_sep_pure φ ψ : @IntoSep PROP ⌜φ ∧ ψ⌠⌜φ⌠⌜ψâŒ. Proof. by rewrite /IntoSep pure_and persistent_and_sep_1. Qed. -Global Instance into_sep_morphism `{BiMorphism PROP PROP'} P Q1 Q2 : +Global Instance into_sep_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : IntoSep P Q1 Q2 → IntoSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. rewrite /IntoSep -bi_mor_sep=> -> //. Qed. +Proof. rewrite /IntoSep -bi_embed_sep=> -> //. Qed. (* FIXME: This instance is kind of strange, it just gets rid of the bi_affinely. Also, it overlaps with `into_sep_affinely_later`, and hence has lower precedence. *) @@ -560,9 +560,9 @@ Global Instance from_or_persistently P Q1 Q2 : FromOr P Q1 Q2 → FromOr (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2). Proof. rewrite /FromOr=> <-. by rewrite persistently_or. Qed. -Global Instance from_or_morphism `{BiMorphism PROP PROP'} P Q1 Q2 : +Global Instance from_or_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : FromOr P Q1 Q2 → FromOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromOr -bi_mor_or => <-. Qed. +Proof. by rewrite /FromOr -bi_embed_or => <-. Qed. (* IntoOr *) Global Instance into_or_or P Q : IntoOr (P ∨ Q) P Q. @@ -582,9 +582,9 @@ Global Instance into_or_persistently P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2). Proof. rewrite /IntoOr=>->. by rewrite persistently_or. Qed. -Global Instance into_or_morphism `{BiMorphism PROP PROP'} P Q1 Q2 : +Global Instance into_or_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /IntoOr -bi_mor_or => <-. Qed. +Proof. by rewrite /IntoOr -bi_embed_or => <-. Qed. (* FromExist *) Global Instance from_exist_exist {A} (Φ : A → PROP): FromExist (∃ a, Φ a) Φ. @@ -604,9 +604,9 @@ Proof. rewrite /FromExist=> <-. by rewrite -plainly_exist_2. Qed. Global Instance from_exist_persistently {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (bi_persistently P) (λ a, bi_persistently (Φ a))%I. Proof. rewrite /FromExist=> <-. by rewrite persistently_exist. Qed. -Global Instance from_exist_morphism `{BiMorphism PROP PROP'} {A} P (Φ : A → PROP) : +Global Instance from_exist_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : FromExist P Φ → FromExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /FromExist -bi_mor_exist => <-. Qed. +Proof. by rewrite /FromExist -bi_embed_exist => <-. Qed. (* IntoExist *) Global Instance into_exist_exist {A} (Φ : A → PROP) : IntoExist (∃ a, Φ a) Φ. @@ -639,9 +639,9 @@ Proof. rewrite /IntoExist=> HP. by rewrite HP plainly_exist. Qed. Global Instance into_exist_persistently {A} P (Φ : A → PROP) : IntoExist P Φ → IntoExist (bi_persistently P) (λ a, bi_persistently (Φ a))%I. Proof. rewrite /IntoExist=> HP. by rewrite HP persistently_exist. Qed. -Global Instance into_exist_morphism `{BiMorphism PROP PROP'} {A} P (Φ : A → PROP) : +Global Instance into_exist_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : IntoExist P Φ → IntoExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /IntoExist -bi_mor_exist => <-. Qed. +Proof. by rewrite /IntoExist -bi_embed_exist => <-. Qed. (* IntoForall *) Global Instance into_forall_forall {A} (Φ : A → PROP) : IntoForall (∀ a, Φ a) Φ. @@ -655,9 +655,9 @@ Proof. rewrite /IntoForall=> HP. by rewrite HP plainly_forall. Qed. Global Instance into_forall_persistently {A} P (Φ : A → PROP) : IntoForall P Φ → IntoForall (bi_persistently P) (λ a, bi_persistently (Φ a))%I. Proof. rewrite /IntoForall=> HP. by rewrite HP persistently_forall. Qed. -Global Instance into_forall_morphism `{BiMorphism PROP PROP'} {A} P (Φ : A → PROP) : +Global Instance into_forall_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : IntoForall P Φ → IntoForall ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /IntoForall -bi_mor_forall => <-. Qed. +Proof. by rewrite /IntoForall -bi_embed_forall => <-. Qed. (* FromForall *) Global Instance from_forall_forall {A} (Φ : A → PROP) : @@ -695,9 +695,9 @@ Proof. rewrite /FromForall=> <-. by rewrite plainly_forall. Qed. Global Instance from_forall_persistently {A} P (Φ : A → PROP) : FromForall P Φ → FromForall (bi_persistently P)%I (λ a, bi_persistently (Φ a))%I. Proof. rewrite /FromForall=> <-. by rewrite persistently_forall. Qed. -Global Instance from_forall_morphism `{BiMorphism PROP PROP'} {A} P (Φ : A → PROP) : +Global Instance from_forall_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : FromForall P Φ → FromForall ⎡P⎤%I (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /FromForall -bi_mor_forall => <-. Qed. +Proof. by rewrite /FromForall -bi_embed_forall => <-. Qed. (* ElimModal *) Global Instance elim_modal_wand P P' Q Q' R : @@ -736,24 +736,24 @@ Proof. rewrite /FromPure /Frame=> <-. by rewrite affinely_persistently_if_elim sep_elim_l. Qed. -Class MakeMorphism `{BiMorphism PROP PROP'} P (Q : PROP') := - make_morphism : ⎡P⎤ ⊣⊢ Q. +Class MakeMorphism `{BiEmbedding PROP PROP'} P (Q : PROP') := + make_embed : ⎡P⎤ ⊣⊢ Q. Arguments MakeMorphism {_ _ _} _%I _%I. -Global Instance make_morphism_true `{BiMorphism PROP PROP'} : +Global Instance make_embed_true `{BiEmbedding PROP PROP'} : MakeMorphism True True. -Proof. by rewrite /MakeMorphism bi_mor_pure. Qed. -Global Instance make_morphism_emp `{BiMorphism PROP PROP'} : +Proof. by rewrite /MakeMorphism bi_embed_pure. Qed. +Global Instance make_embed_emp `{BiEmbedding PROP PROP'} : MakeMorphism emp emp. -Proof. by rewrite /MakeMorphism bi_mor_emp. Qed. -Global Instance make_morphism_default `{BiMorphism PROP PROP'} : +Proof. by rewrite /MakeMorphism bi_embed_emp. Qed. +Global Instance make_embed_default `{BiEmbedding PROP PROP'} : MakeMorphism P ⎡P⎤ | 100. Proof. by rewrite /MakeMorphism. Qed. -Global Instance frame_morphism `{BiMorphism PROP PROP'} p P Q (Q' : PROP') R : +Global Instance frame_embed `{BiEmbedding PROP PROP'} p P Q (Q' : PROP') R : Frame p R P Q → MakeMorphism Q Q' → Frame p ⎡R⎤ ⎡P⎤ Q'. Proof. rewrite /Frame /MakeMorphism => <- <-. - rewrite bi_mor_sep bi_mor_affinely_if bi_mor_persistently_if => //. + rewrite bi_embed_sep bi_embed_affinely_if bi_embed_persistently_if => //. Qed. Class MakeSep (P Q PQ : PROP) := make_sep : P ∗ Q ⊣⊢ PQ. @@ -934,7 +934,7 @@ Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed. (* FromModal *) Global Instance from_modal_absorbingly P : FromModal (bi_absorbingly P) P. Proof. apply absorbingly_intro. Qed. -Global Instance from_modal_morphism `{BiMorphism PROP PROP'} P Q : +Global Instance from_modal_embed `{BiEmbedding PROP PROP'} P Q : FromModal P Q → FromModal ⎡P⎤ ⎡Q⎤. Proof. by rewrite /FromModal=> ->. Qed. End bi_instances. @@ -1143,9 +1143,9 @@ Global Instance is_except_0_except_0 P : IsExcept0 (â—‡ P). Proof. by rewrite /IsExcept0 except_0_idemp. Qed. Global Instance is_except_0_later P : IsExcept0 (â–· P). Proof. by rewrite /IsExcept0 except_0_later. Qed. -Global Instance is_except_0_morphism `{SbiMorphism PROP PROP'} P : +Global Instance is_except_0_embed `{SbiEmbedding PROP PROP'} P : IsExcept0 P → IsExcept0 ⎡P⎤. -Proof. by rewrite /IsExcept0 -sbi_mor_except_0=>->. Qed. +Proof. by rewrite /IsExcept0 -sbi_embed_except_0=>->. Qed. (* FromModal *) Global Instance from_modal_later P : FromModal (â–· P) P. @@ -1173,9 +1173,9 @@ Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_plainly. Qed. Global Instance into_except_0_persistently P Q : IntoExcept0 P Q → IntoExcept0 (bi_persistently P) (bi_persistently Q). Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_persistently. Qed. -Global Instance into_except_0_morphism `{SbiMorphism PROP PROP'} P Q : +Global Instance into_except_0_embed `{SbiEmbedding PROP PROP'} P Q : IntoExcept0 P Q → IntoExcept0 ⎡P⎤ ⎡Q⎤. -Proof. rewrite /IntoExcept0=> ->. by rewrite sbi_mor_except_0. Qed. +Proof. rewrite /IntoExcept0=> ->. by rewrite sbi_embed_except_0. Qed. (* ElimModal *) Global Instance elim_modal_timeless P Q : @@ -1282,9 +1282,9 @@ Proof. rewrite /IntoLaterN=> ->. by rewrite laterN_plainly. Qed. Global Instance into_later_persistently n P Q : IntoLaterN n P Q → IntoLaterN n (bi_persistently P) (bi_persistently Q). Proof. rewrite /IntoLaterN=> ->. by rewrite laterN_persistently. Qed. -Global Instance into_later_morphism`{SbiMorphism PROP PROP'} n P Q : +Global Instance into_later_embed`{SbiEmbedding PROP PROP'} n P Q : IntoLaterN n P Q → IntoLaterN n ⎡P⎤ ⎡Q⎤. -Proof. rewrite /IntoLaterN=> ->. by rewrite sbi_mor_laterN. Qed. +Proof. rewrite /IntoLaterN=> ->. by rewrite sbi_embed_laterN. Qed. Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 : IntoLaterN' n P1 Q1 → IntoLaterN n P2 Q2 → @@ -1368,9 +1368,9 @@ Proof. by rewrite /FromLaterN laterN_persistently=> ->. Qed. Global Instance from_later_absorbingly n P Q : FromLaterN n P Q → FromLaterN n (bi_absorbingly P) (bi_absorbingly Q). Proof. by rewrite /FromLaterN laterN_absorbingly=> ->. Qed. -Global Instance from_later_morphism`{SbiMorphism PROP PROP'} n P Q : +Global Instance from_later_embed`{SbiEmbedding PROP PROP'} n P Q : FromLaterN n P Q → FromLaterN n ⎡P⎤ ⎡Q⎤. -Proof. rewrite /FromLaterN=> <-. by rewrite sbi_mor_laterN. Qed. +Proof. rewrite /FromLaterN=> <-. by rewrite sbi_embed_laterN. Qed. Global Instance from_later_forall {A} n (Φ Ψ : A → PROP) : (∀ x, FromLaterN n (Φ x) (Ψ x)) → FromLaterN n (∀ x, Φ x) (∀ x, Ψ x). diff --git a/theories/proofmode/tactics.v b/theories/proofmode/tactics.v index d69615069..d2172c5d3 100644 --- a/theories/proofmode/tactics.v +++ b/theories/proofmode/tactics.v @@ -71,9 +71,9 @@ Proof. split. apply bi.entails_wand. apply bi.wand_entails. Qed. Instance as_valid_equiv {PROP : bi} (P Q : PROP) : AsValid (P ≡ Q) (P ∗-∗ Q) | 0. Proof. split. apply bi.equiv_wand_iff. apply bi.wand_iff_equiv. Qed. -Instance as_valid_morphism `{BiMorphism PROP PROP'} (φ : Prop) (P : PROP) : +Instance as_valid_embed `{BiEmbedding PROP PROP'} (φ : Prop) (P : PROP) : AsValid φ P → AsValid φ ⎡P⎤. -Proof. rewrite /AsValid=> ->. rewrite bi_mor_valid //. Qed. +Proof. rewrite /AsValid=> ->. rewrite bi_embed_valid //. Qed. (** * Start a proof *) Tactic Notation "iStartProof" uconstr(PROP) := -- GitLab