diff --git a/README.txt b/README.txt
index 6144b8653df134517b5ad34316d18b40e0949b98..6f0c8257fb7921430b53506759812d0655087cd4 100644
--- a/README.txt
+++ b/README.txt
@@ -51,19 +51,23 @@ CONTENTS
   * lang.v defines the threadpool reduction and derives some lemmas
     from core_lang.v
   
-  * masks.v introduces some lemmas about masks
+  * world_prop_recdom.v uses the ModuRes Coq library to construct the domain
+    for Iris propositions, satisfying the interface to the Iris domain
+    defined in world_prop.v
   
-  * world_prop.v uses the ModuRes Coq library to construct the domain
-    for Iris propositions
+  * iris_core.v constructs the BI structure on the Iris domain, and defines
+    some additional connectives (box, later, ownership).
   
-  * iris_core.v defines world satisfaction and the simpler assertions
+  * iris_plog.v adds the programming logic: World satisfaction, primitive view shifts,
+    weakest precondition.
   
-  * iris_vs.v defines view shifts and proves their rules
+  * iris_vs_rules.v and iris_wp_rules.v contain proofs of the primitive proof
+    rules for primitive view shifts and weakest precondition, respectively.
   
-  * iris_wp.v defines weakest preconditions and proves the rules for
-    Hoare triples
+  * iris_derived_rules.v derives rules for Hoare triples and view shifts
+    (as presented in the appendix).
   
-  * iris_meta.v proves adequacy, robust safety, and the lifting lemmas
+  * iris_meta.v proves adequacy and the lifting lemmas
 
   The development uses ModuRes, a Coq library by Sieczkowski et al. to
   solve the recursive domain equation (see the paper for a reference)
@@ -76,7 +80,7 @@ REQUIREMENTS
   Coq 
 
   We have tested the development using Coq 8.4pl4 on Linux and Mac
-  machines. The entire compilation took less than an hour.
+  machines. The entire compilation took less than 15 minutes.
   
 
 HOW TO COMPILE
@@ -95,23 +99,23 @@ OVERVIEW OF LEMMAS
 
   RULE         Coq lemma
   -----------------------
-  VSTimeless   iris_vs.v:/vsTimeless
-  NewInv       iris_vs.v:/vsNewInv
-  InvOpen      iris_vs.v:/vsOpen
-  InvClose     iris_vs.v:/vsClose
-  VSTrans      iris_vs.v:/vsTrans
-  VSImp        iris_vs.v:/vsEnt
-  VSFrame      iris_vs.v:/vsFrame
-  FpUpd        iris_vs.v:/vsGhostUpd
-
-  Ret          iris_wp.v:/htRet
-  Bind         iris_wp.v:/htBind
-  Frame        iris_wp.v:/htFrame
-  AFrame       iris_wp.v:/htAFrame
-  Csq          iris_wp.v:/htCons
-  ACSQ         iris_wp.v:/htACons
-  Fork         iris_wp.v:/htFork
+  VSTimeless   iris_derived_rules.v:vsTimeless
+  NewInv       iris_derived_rules.v:vsNewInv
+  InvOpen      iris_derived_rules.v:vsOpen
+  InvClose     iris_derived_rules.v:vsClose
+  VSTrans      iris_derived_rules.v:vsTrans
+  VSImp        iris_derived_rules.v:vsEnt
+  VSFrame      iris_derived_rules.v:vsFrame
+  FpUpd        iris_derived_rules.v:vsGhostUpd
+
+  Ret          iris_derived_rules.v:htRet
+  Bind         iris_derived_rules.v:htBind
+  Frame        iris_derived_rules.v:htFrame
+  AFrame       iris_derived_rules.v:htAFrame
+  Csq          iris_derived_rules.v:htCons
+  ACSQ         iris_derived_rules.v:htACons
+  Fork         iris_derived_rules.v:htFork
 
   The main adequacy result is expressed by Theorem
-  iris_wp.v:/adequacy_obs.
+  iris_meta.v:adequacy_obs.
 
diff --git a/iris_core.v b/iris_core.v
index f3eb0d5c37785d490011062d4fe92a127099e051..be03783f5c27ca6808057cd55003943ba05d5889 100644
--- a/iris_core.v
+++ b/iris_core.v
@@ -295,6 +295,15 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
       - move=>wf /= m Hle HP. apply (H wf (S m)); assumption || omega.
     Qed.
 
+    Lemma later_wand P Q:
+      â–¹(P -* Q) == â–¹P -* â–¹Q.
+    Proof.
+      intros w n. split; (destruct n; first (intro; exact:bpred)); intro H.
+      - simpl in H. move=>wf /= m Hle HP.
+        destruct m; first exact I. apply H; assumption || omega.
+      - move=>wf /= m Hle HP. apply (H wf (S m)); assumption || omega.
+    Qed.
+
     Lemma later_top P:
       ▹⊤ == ⊤.
     Proof.
@@ -481,12 +490,32 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
     Qed.
 
     Lemma box_impl P Q:
-      □(P → Q) ⊑ □P → □Q. (* The backwards direction does NOT hold. *)
+      □(P → Q) ⊑ □P → □Q.
+    (* The backwards direction does NOT hold: We can have □⊤ → own m
+       without having □(⊤ → own m).  *)
     Proof.
       apply and_impl. rewrite -box_conj. apply box_intro.
       rewrite ->box_elim. apply and_impl. reflexivity.
     Qed.
 
+    Lemma box_wand P Q:
+      □(P -* Q) ⊑ □P -* □Q.
+    (* The backwards direction does NOT hold: We can have □⊤ -* own m
+       without having □(⊤ -* own m).  *)
+    Proof.
+      apply sc_si. rewrite -box_star. apply box_intro.
+      rewrite ->box_elim. apply sc_si. reflexivity.
+    Qed.
+
+    Lemma box_impl_si P Q:
+      □(P → Q) == □(P -* Q).
+    Proof.
+      apply pord_antisym.
+      { apply box_intro. rewrite ->box_elim. apply impl_si. }
+      apply box_intro. apply and_impl. rewrite <-box_conj_star.
+      rewrite ->box_elim. apply sc_si. reflexivity.
+    Qed.
+    
     Lemma box_dup P :
       â–¡P == â–¡P * â–¡P.
     Proof.
@@ -663,7 +692,15 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
       eapply HTQ, HPQ; [omega|omega|].
       eapply dpred, HP. omega.
     Qed.
-
+    
+    Lemma timeless_si P Q:
+      timeless Q ⊑ timeless (P -* Q).
+    Proof.
+      move=>w n HTQ /= w' k Ltk HPQ w'' [|[|m]] Lem HP; first exact: bpred.
+      { apply HPQ, HP. omega. }
+      eapply HTQ, HPQ; [omega|omega|].
+      eapply dpred, HP. omega.
+    Qed.
 
     Section TimelessQuant.
       Context {T} `{cT : cmetric T}.
diff --git a/iris_derived_rules.v b/iris_derived_rules.v
index 404b686abae1ec25550c85165790ecc519856d65..89addfbc0399a42df8453e8601db095208a3b193 100644
--- a/iris_derived_rules.v
+++ b/iris_derived_rules.v
@@ -308,7 +308,7 @@ Module Type IRIS_DERIVED_RULES (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C)
       
     Lemma htAFrame safe m m' P R e Q
           (HD  : m # m')
-          (HAt : atomic e) :
+          (HNv : ~is_value e) :
       ht safe m P e Q ⊑ ht safe (m ∪ m') (P * ▹R) e (lift_bin sc Q (umconst R)).
     Proof.
       rewrite {1}/ht. apply htIntro.
diff --git a/iris_ht_rules.v b/iris_ht_rules.v
index 61c2a1a2a5a2c326fb2d6fddf2e6bf47804ee22e..4a02e440d550ed0a994245103664423f98f1b31e 100644
--- a/iris_ht_rules.v
+++ b/iris_ht_rules.v
@@ -84,6 +84,37 @@ Module Type IRIS_HT_RULES (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP:
             exists e' (K ∘ K0). rewrite -> HE, fill_comp. auto. }
     Qed.
 
+    (** Fork **)
+    Lemma wpFork safe m R e :
+      ▹wp safe m e (umconst ⊤) * ▹R ⊑ wp safe m (fork e) (lift_bin sc (eqV (exist _ fork_ret fork_ret_is_value)) (umconst R)).	(* PDS: Why sc not and? RJ: 'cause sc is stronger. *)
+    Proof.
+      intros w n. destruct n; first (intro; exact:bpred).
+      intros [[w1 w2] [EQw [Hwp HLR]]].
+      rewrite ->unfold_wp; intros w'; intros.
+      split; [| split; intros; [exfalso | split; intros ] ].
+      - intros. contradiction (fork_not_value HV).
+      - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec; subst.
+        eapply fork_stuck with (K := ε); [| repeat eexists; eassumption ]; reflexivity.
+      - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec.
+        apply fork_inj in HDec; subst e'. simpl in EQw.
+        unfold lt in HLt. simpl in Hwp.
+        simpl in HLR; rewrite <- Le.le_n_Sn in HE.
+        do 2 eexists. split; last first.
+        { split.
+          - eapply propsMN, Hwp. omega.
+          - eapply wsat_dist, HE; try reflexivity; [].
+            apply cmra_op_dist; last reflexivity.
+            eapply mono_dist, EQw; omega. }
+        rewrite ->fill_empty; rewrite <- (le_S_n _ _ HLt) in HLR.
+        eapply wpValue. exists (1 w2, w2). simpl. split_conjs.
+        + now rewrite ra_op_unit.
+        + reflexivity.
+        + eexact HLR.
+      - right; right; exists e empty_ctx; rewrite ->fill_empty; reflexivity.
+    Grab Existential Variables.
+    { exact:fork_ret_is_value. }
+    Qed.
+
     (** Consequence **)
     Lemma wpMon safe m e φ φ':
       φ ⊑ φ' -> wp safe m e φ ⊑ wp safe m e φ'.
@@ -225,72 +256,37 @@ Module Type IRIS_HT_RULES (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP:
     Qed.
 
     Lemma wpAFrameRes safe m R e φ
-          (HAt : atomic e) :
+          (HNv : ~is_value e) :
       (wp safe m e φ) * ▹R ⊑ wp safe m e (lift_bin sc φ (umconst R)).
     Proof.
       intros w n. destruct n; first (intro; exact:bpred).
       move=>[[w1 w2] [/= EQr [Hwp HLR]]].
       rewrite->unfold_wp; intros wf; intros.
       rewrite ->unfold_wp in Hwp. 
-      edestruct (Hwp (w2 · wf) k mf) as [_ [HeS [_ Hsafe]]]; [omega|assumption| |].
+      edestruct (Hwp (w2 · wf) k mf) as [_ [HeS [HeF Hsafe]]]; [omega|assumption| |].
       { eapply wsat_dist, HE; first reflexivity; last reflexivity.
         rewrite assoc. apply cmra_op_dist; last reflexivity.
         eapply mono_dist, EQr. omega. }
-      split; [intros; exfalso | split; intros; [| split; intros; [exfalso| ] ] ].
-      - contradiction (atomic_not_value e).
+      split; [intros; exfalso | split; intros; [| split; intros  ] ].
+      - contradiction.
       - edestruct HeS as [w'' [He' HE']]; try eassumption; [].
-        clear HE Hwp HeS; rewrite ->assoc in HE'.
-        exists (w'' · w2). split; [| eassumption].
-        assert (HNV : ~ is_value ei)
-          by (intros HV; eapply (values_stuck HV); [symmetry; apply fill_empty | repeat eexists; eassumption]).
-        subst e; assert (HT := atomic_fill HAt HNV); subst K; clear HNV.
-        rewrite ->fill_empty in *. unfold lt in HLt.
-        assert (HV := atomic_step HAt HStep).
-        clear - He' HV HLR HLt; rename w'' into w.
-        eapply wpValuePvs. move=>wf; intros.
-        rewrite ->unfold_wp in He'. rewrite <-assoc in HE.
-        edestruct He' as [HVal _]; try eassumption; first de_auto_eq; [].
-        specialize (HVal HV); destruct HVal as [w'' [Hφ HE']].
-        exists (w'' · w2). split; [| now rewrite -assoc].
-        exists (w'', w2); split; simpl morph.
-        { rewrite [ra_op]lock /= -lock. reflexivity. }
-        split; first eassumption.
-        rewrite /const /=. eapply propsMN, HLR. omega.
-      - subst; eapply fork_not_atomic; eassumption.
+        clear HE Hwp HeS HeF; rewrite ->assoc in HE'.
+        exists (w'' · w2). split; [| eassumption]. subst e.
+        eapply wpFrameRes. exists (w'', w2).
+        split; first (apply sp_eq_iff; reflexivity).
+        split; first assumption.
+        eapply dpred, HLR. omega.
+      - edestruct HeF as [wfk [wret [He' [Ht' HE']]]]; try eassumption; [].
+        clear HE Hwp HeS HeF; rewrite ->assoc in HE'. subst e.
+        exists wfk (wret · w2). split; [| split; rewrite ->?assoc; eassumption].
+        eapply wpFrameRes. exists (wret, w2).
+        split; first (apply sp_eq_iff; reflexivity).
+        split; first assumption.
+        eapply dpred, HLR. omega.
       - now auto.
     Qed.
 
-    (** Fork **)
-    Lemma wpFork safe m R e :
-      ▹wp safe m e (umconst ⊤) * ▹R ⊑ wp safe m (fork e) (lift_bin sc (eqV (exist _ fork_ret fork_ret_is_value)) (umconst R)).	(* PDS: Why sc not and? RJ: 'cause sc is stronger. *)
-    Proof.
-      intros w n. destruct n; first (intro; exact:bpred).
-      intros [[w1 w2] [EQw [Hwp HLR]]].
-      rewrite ->unfold_wp; intros w'; intros.
-      split; [| split; intros; [exfalso | split; intros ] ].
-      - intros. contradiction (fork_not_value HV).
-      - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec; subst.
-        eapply fork_stuck with (K := ε); [| repeat eexists; eassumption ]; reflexivity.
-      - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec.
-        apply fork_inj in HDec; subst e'. simpl in EQw.
-        unfold lt in HLt. simpl in Hwp.
-        simpl in HLR; rewrite <- Le.le_n_Sn in HE.
-        do 2 eexists. split; last first.
-        { split.
-          - eapply propsMN, Hwp. omega.
-          - eapply wsat_dist, HE; try reflexivity; [].
-            apply cmra_op_dist; last reflexivity.
-            eapply mono_dist, EQw; omega. }
-        rewrite ->fill_empty; rewrite <- (le_S_n _ _ HLt) in HLR.
-        eapply wpValue. exists (1 w2, w2). simpl. split_conjs.
-        + now rewrite ra_op_unit.
-        + reflexivity.
-        + eexact HLR.
-      - right; right; exists e empty_ctx; rewrite ->fill_empty; reflexivity.
-    Grab Existential Variables.
-    { exact:fork_ret_is_value. }
-    Qed.
-
+    (* Unsafe and safe weakest-pre *)
     Lemma wpUnsafe {m e φ} : wp true m e φ ⊑ wp false m e φ.
     Proof.
       move=> w n. move: n w e φ; elim/wf_nat_ind. move=> n IH w e φ He.
diff --git a/iris_meta.v b/iris_meta.v
index 01451fe8ef43ded356f02205fe4c12893e187ae3..c8d91366e8e585cf311f68cdd7f9a26500cd3156 100644
--- a/iris_meta.v
+++ b/iris_meta.v
@@ -184,7 +184,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
       n[(fun v => pcmconst (sp_const (Q v)))].
     Next Obligation.
       move=>v1 v2 EQv. destruct n; first exact:dist_bound.
-      intros w m Hlt. rewrite /= /sp_constF. destruct m; first reflexivity.
+      intros w m Hlt. rewrite /=. destruct m; first reflexivity.
       rewrite EQv. reflexivity.
     Qed.
 
@@ -227,129 +227,6 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
 
   End Adequacy.
 
-  (* Section RobustSafety.
-
-    Implicit Types (P : Props) (i n k : nat) (safe : bool) (m : mask) (e : expr) (v : value) (Q : vPred) (r : res) (w : Wld) (σ : state).
-
-    Implicit Types (E : expr -n> Props) (Θ : Props).
-
-    Program Definition restrictV E : vPred :=
-      n[(fun v => E (` v))].
-    Next Obligation.
-      move=> v v' Hv w k r; move: Hv.
-      case: n=>[_ Hk | n]; first by exfalso; omega.
-      by move=> /= ->.
-    Qed.
-
-    Definition pure e := ~ atomic e /\ forall σ e' σ',
-      prim_step (e,σ) (e',σ') ->
-      σ = σ'.
-    
-    Definition restrict_lang := forall e,
-      reducible e ->
-      atomic e \/ pure e.
-
-    Definition fork_compat E Θ := forall e,
-      Θ ⊑ (E (fork e) → E e).
-    
-    Definition fill_compat E Θ := forall K e,
-      Θ ⊑ (E (fill K e) ↔ E e * E (fill K fork_ret)).
-
-    Definition atomic_compat E Θ m := forall e,
-      atomic e ->
-      Θ ⊑ ht false m (E e) e (restrictV E).
-
-    Definition pure_compat E Θ m := forall e σ e',
-      prim_step (e,σ) (e',σ) ->
-      Θ ⊑ vs m m (E e) (E e').
-
-    Lemma robust_safety {E Θ e m}
-        (LANG : restrict_lang)
-        (FORK : fork_compat E Θ)
-        (FILL : fill_compat E Θ)
-        (HT : atomic_compat E Θ m)
-        (VS : pure_compat E Θ m) :
-      □Θ ⊑ ht false m (E e) e (restrictV E).
-    Proof.
-      move=> wz nz rz HΘ w HSw n r HLe _ He.
-      have {HΘ wz nz rz HSw HLe} HΘ: Θ w n 1 by rewrite/= in HΘ; exact: propsMWN HΘ.
-      (* generalize IH's post-condition for the fork case *)
-      pose post Q := forall v w n r, (E (`v)) w n r -> (Q v) w n r.
-      set Q := restrictV E; have HQ: post Q by done.
-      move: HΘ He HQ; move: n e w r Q; elim/wf_nat_ind => n IH e w r Q HΘ He HQ.
-      rewrite unfold_wp; move=> w' k rf mf σ HSw HLt HD HW.
-      (* specialize a bit *)
-      move/(_ _ _ _ _ HΘ): FORK => FORK.
-      move/(_ _ _ _ _ _ HΘ): FILL => FILL.
-      move/(_ _ _)/biimpL: (FILL) => SPLIT; move/(_ _ _)/biimpR: FILL => FILL.
-      move/(_ _ _ _ _ _ HΘ): HT => HT.
-      move/(_ _ _ _ _ _ _ _ HΘ): VS => VS.
-      have {IH HΘ Θ} IH: forall e w' r Q,
-        w ⊑ w' -> (E e) w' k r -> post Q -> ((wp false m e) Q) w' k r.
-      { move=> ? ? ? ? HSw'; move/(propsMWN HSw' (lelt HLt)): HΘ => HΘ. exact: IH. }
-      have HLe: S k <= n by omega.
-      split.
-      (* e value *)
-      { move=> HV {FORK FILL LANG HT VS IH}.
-        exists w' r. split; [by reflexivity | split; [| done]].
-        apply: HQ. exact: propsMWN He. }
-      split; [| split; [| done]]; first last.
-      (* e forks *)
-      { move=> e' K HDec {LANG FILL HT VS}; rewrite HDec {HDec} in He.
-        move/(SPLIT _ _ _ (prefl w) _ _ (lerefl n) unit_min)
-          /(propsMWN HSw (lelt HLt)): He => [re' [rK [Hr [He' HK]]]] {SPLIT}.
-        move/(FORK _ _ HSw _ _ (lelt HLt) unit_min): He' => He' {FORK}.
-        exists w' re' rK. split; [by reflexivity | split; [exact: IH | split; [exact: IH |]]].
-        move: HW; rewrite -Hr. exact: wsatM. }
-      (* e steps *)
-      (* both forthcoming cases work at step-indices S k and (for the IH) k. *)
-      have HLt': k < S k by done.
-      move=> σ' ei ei' K HDec HStep; rewrite HDec {HDec} in He.
-      move/(SPLIT _ _ _ (prefl w) _ _ (lerefl n) unit_min)
-        /(propsMWN HSw HLe): He => [rei [rK [Hr [Hei HK]]]] {SPLIT}.
-      move: HW; rewrite -Hr -assoc => HW {Hr r}.
-      have HRed: reducible ei by exists σ (ei',σ').
-      case: (LANG ei HRed)=>[HA {VS} | [_ HP] {HT}] {LANG HRed}; last first.
-      (* pure step *)
-      { move/(_ _ _ _ HStep): HP => HP; move: HStep HW. rewrite HP => HStep HW {HP σ}.
-        move/(_ _ _ _ HStep _ HSw _ _ HLe unit_min Hei): VS => VS {HStep HLe Hei}.
-        move: HD; rewrite -{1}(mask_union_idem m) => HD.
-        move/(_ _ _ _ _ _ (prefl w') HLt' HD HW): VS => [w'' [r' [HSw' [Hei' HW']]]] {HLt' HD HW}.
-        have HLe': k <= S k by omega.
-        exists w'' (r' · rK). split; [done | split; [| by move/(wsatM HLe'): HW'; rewrite assoc]].
-        set HwSw'' := ptrans HSw HSw'.
-        apply: IH; [done | | done].
-        apply: (FILL _ _ _ HwSw'' _ _ (lelt HLt) unit_min).
-        exists r' rK. split; first by reflexivity.
-        split; [ exact: propsMN Hei' | exact: propsMWN HK ]. }
-      (* atomic step *)
-      move/(_ _ HA _ HSw (S k) _ HLe unit_min Hei): HT => {Hei HLe} Hei.
-      (* unroll wp(ei,E)—step case—to get wp(ei',E) *)
-      move: Hei; rewrite {1}unfold_wp => Hei.
-      move/(_ _ _ _ _ _ (prefl w') HLt' HD HW): Hei => [_ [HS _]] {HLt' HW}.
-      have Hεei: ei = fill ε ei by rewrite fill_empty.
-      move/(_ _ _ _ _ Hεei HStep): HS => [w'' [r' [HSw' [Hei' HW']]]] {Hεei}.
-      (* unroll wp(ei',E)—value case—to get E ei' *)
-      move: Hei'; rewrite (fill_empty ei') {1}unfold_wp => Hei'.
-      move: IH HLt HK HW' Hei'; case: k => [| k'] IH HLt HK HW' Hei'.
-      { exists w'' r'. by split; [done | split; [exact: wpO | done]]. }
-      have HLt': k' < S k' by done.
-      move/(_ _ _ _ _ _ (prefl w'') HLt' HD HW'): Hei' => [Hv _] {HLt' HD HW'}.
-      move: (atomic_step HA HStep) => HV {HA HStep}.
-      move/(_ HV): Hv => [w''' [rei' [HSw'' [Hei' HW]]]].
-      move: HW; rewrite assoc => HW.
-      set Hw'Sw''' := ptrans HSw' HSw''.
-      set HwSw''' := ptrans HSw Hw'Sw'''.
-      exists w''' (rei' · rK). split; [done | split; [| done]].
-      apply: IH; [done | | done].
-      apply: (FILL _ _ _ HwSw''' _ _ (lelt HLt) unit_min).
-      exists rei' rK. split; [by reflexivity | split; [done |]].
-      have HLe: S k' <= S (S k') by omega.
-      exact: propsMWN HK.
-    Qed.
-
-  End RobustSafety. *)
-
   Section StatefulLifting.
 
     Implicit Types (P : Props) (n k : nat) (safe : bool) (m : DecEnsemble nat) (e : expr) (r : res) (σ : state) (w : Wld).
@@ -502,7 +379,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
         apply top_valid. apply htValid. rewrite sc_top_unit.
         (* Now fall back to proving this in the model. *)
         move=>w n. destruct n; first (intro;exact:bpred).
-        rewrite /= /sp_constF. move=>[[Hφ Hval] HownS].
+        rewrite /=. move=>[[Hφ Hval] HownS].
         eapply wpValue; [].
         simpl. exists σ'. split; assumption.
     Grab Existential Variables.
diff --git a/iris_plog.v b/iris_plog.v
index 7dc8d6a247e524099b8b70b8305e1633483a3aa5..a11329fa96b5496d4189b26ef1d07d5ce317aba2 100644
--- a/iris_plog.v
+++ b/iris_plog.v
@@ -118,11 +118,7 @@ Module Type IRIS_PLOG (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
       rewrite comm -comp_finmap_move comm ra_op_unit. reflexivity.
     Qed.
 
-    (* Go through some struggle to even write down world satisfaction... *)
-    (*
-    Local Open Scope finmap_scope.
-    *)
-    
+    (** Now we define world satisfaction **)
     Lemma world_inv_val {wt n}:
       forall (pv: cmra_valid wt n) {i agP} (Heq: (Invs wt) i = n = Some agP), cmra_valid agP n.
     Proof.
@@ -191,16 +187,13 @@ Module Type IRIS_PLOG (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
     Qed.  
 
     (* It may be possible to use "later_sp" here, but let's avoid indirections where possible. *)
-    Definition wsatF σ m w n :=
-      match n with
-      | S (S n') => exists s : nat -f> Wld,
-                               let wt := comp_finmap w s in
-                               wsatTotal (S n') σ s m wt
-      | _        => True
-      end.
-
     Program Definition wsat σ m w : SPred :=
-      p[(wsatF σ m w)].
+      p[(fun n => match n return _ with
+                  | S (S n') => exists s : nat -f> Wld,
+                                           let wt := comp_finmap w s in
+                                           wsatTotal (S n') σ s m wt
+                  | _        => True
+                  end)].
     Next Obligation.
       intros n1 n2 HLe. do 2 (destruct n2; first (intro; exact I)).
       do 2 (destruct n1; first (exfalso; omega)).
@@ -501,20 +494,27 @@ Module Type IRIS_PLOG (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
       rewrite unfold_wp; intros w'; intros; now inversion HLt.
     Qed.
 
+    (* The two definitions are actually closely related. *)
     Lemma wpValuePvs e (HV : is_value e) safe m φ :
-      pvs m m (φ (exist _ e HV)) ⊑ wp safe m e φ.
+      pvs m m (φ (exist _ e HV)) == wp safe m e φ.
     Proof.
-      intros w n Hvs.
-      rewrite unfold_wp; intros wf; intros; split; [| split; [| split] ]; intros.
-      - edestruct (Hvs wf k mf) as [w' [Hφ HE']]; try eassumption; first de_auto_eq; [].
-        exists w'. split; last assumption.
-        eapply spredNE, dpred, Hφ; last omega.
-        apply (met_morph_nonexp φ). apply dist_refl.
-        reflexivity.
-      - contradiction (values_stuck HV HDec).
-        repeat eexists; eassumption.
-      - subst e; contradiction (fork_not_value (fill_value HV)).
-      - unfold safeExpr. auto.
+      intros w n. split.
+      - intros Hvs.
+        rewrite unfold_wp; intros wf; intros; split; [| split; [| split] ]; intros.
+        + edestruct (Hvs wf k mf) as [w' [Hφ HE']]; try eassumption; first de_auto_eq; [].
+          exists w'. split; last assumption.
+          eapply spredNE, dpred, Hφ; last omega.
+          apply (met_morph_nonexp φ). apply dist_refl.
+          reflexivity.
+        + contradiction (values_stuck HV HDec).
+          repeat eexists; eassumption.
+        + subst e; contradiction (fork_not_value (fill_value HV)).
+        + unfold safeExpr. auto.
+      - move=>Hwp. intros wf; intros.
+        rewrite ->unfold_wp in Hwp.
+        edestruct (Hwp wf k mf) as [HVal _]; try eassumption; first de_auto_eq; [].
+        destruct (HVal HV) as [w' [Hφ Hws]].
+        exists w'. split; assumption.
     Qed.
 
     Lemma wpValue e (HV : is_value e) safe m φ :
diff --git a/lib/ModuRes/Agreement.v b/lib/ModuRes/Agreement.v
index f7d0375dce2ee82420bb3e2bd622d0d311c7410e..8dae4ac6f04d7099eb608c2947e0bdcf34dae355 100644
--- a/lib/ModuRes/Agreement.v
+++ b/lib/ModuRes/Agreement.v
@@ -301,19 +301,14 @@ Section Agreement.
     move=><-. assumption.
   Qed.
 
-  Definition ra_ag_tsdiag_n (σ : chain ra_agree) n: T :=
-    match σ n with
-    | ag_inj v' ts' tsx' => ts' n
-    end.
-
   Program Definition ra_ag_compl (σ : chain ra_agree) {σc : cchain σ} :=
     ag_inj (compl (ra_ag_vchain σ))
-           (fun n => ra_ag_tsdiag_n σ n) _.
+           (fun n => match σ n return _ with
+                     | ag_inj v' ts' tsx' => ts' n end) _.
   Next Obligation.
     move=>n i HLe pv. simpl. rewrite -/dist.    
     assert (pvc: compl (ra_ag_vchain σ) i) by assumption.
     destruct n as [|n]; first by apply: dist_bound.
-    unfold ra_ag_tsdiag_n.
     ddes (σ i) at 1 3 as [vi tsi tsxi] deqn:EQi.
     ddes (σ (S n)) at 1 3 as [vSn tsSn tsxSn] deqn:EQSn.
     cchain_eleq σ at i (S n) lvl:(S n); move=>[EQv EQts].
@@ -336,7 +331,6 @@ Section Agreement.
       inversion EQi; subst. reflexivity.
     - move=>j HLej pv1.
       destruct j as [|j]; first by apply: dist_bound.
-      unfold ra_ag_tsdiag_n.
       rewrite /ra_ag_vchain /= in pv1. move:pv1.
       ddes (σ (S j)) at 1 3 6 as [vSSj tsSSj tsxSSj] deqn:EQSSj.
       intros pv1. cchain_eleq σ at (S j) i lvl:(S j); move=>[EQv EQts].
@@ -347,15 +341,6 @@ Section Agreement.
   Global Instance ra_ag_pcm: pcmType ra_agree.
   Proof.
     split. repeat intro. eapply ra_ag_pord. unfold compl, ra_ag_cmt, ra_ag_compl.
-    assert (HT: forall n, ra_ag_vchain ρ n n -> ra_ag_tsdiag_n σ n = n = ra_ag_tsdiag_n ρ n).
-    { move=>n pv. destruct n as [|n]; first by apply: dist_bound.
-      unfold ra_ag_tsdiag_n.
-      ddes (σ (S n)) at 1 3 as [vσn tsσn tsxσn] deqn:EQσn.
-      ddes (ρ (S n)) at 1 3 as [vρn tsρn tsxρn] deqn:EQρn.
-      specialize (H (S n)). rewrite ->ra_ag_pord in H.
-      rewrite <-EQσn, <-EQρn, comm in H. destruct H as [EQv EQts].
-      apply EQts. rewrite EQv. rewrite /ra_ag_vchain -EQρn in pv. assumption.
-    }
     split.
     - move=>n. split; first by (intros (pv1 & pv2 & _); tauto).
       simpl. move=>pv. move:(pv). rewrite {1}/ra_ag_vchain. simpl.
@@ -366,7 +351,12 @@ Section Agreement.
         ddes (σ n) at 1 3 as [vσn tsσn tsxσn] deqn:EQσn.
         specialize (H n). rewrite ->ra_ag_pord, <-EQρn, <-EQσn, comm in H.
         destruct H as [EQv _]. rewrite <-EQv in pvρ. destruct pvρ as [pv1 _]. assumption. }
-      do 2 (split; first assumption). symmetry. apply HT. assumption.
+      do 2 (split; first assumption). symmetry.
+      destruct n as [|n]; first by apply: dist_bound.
+      rewrite -EQρn. destruct (σ (S n)) as [vσn tsσn rsxσn] eqn:EQσn.
+      specialize (H (S n)). rewrite ->ra_ag_pord in H.
+      rewrite ->EQσn, <-EQρn, comm in H. destruct H as [EQv EQts].
+      apply EQts. rewrite EQv. rewrite /ra_ag_vchain -EQρn in pv. assumption.
     - intros n (pv1 & pv2 & EQ). reflexivity.
   Qed.
 
diff --git a/lib/ModuRes/BI.v b/lib/ModuRes/BI.v
index 9efd81dfc4bf8a82c9d454626e31f97f36666055..a96d3b411849e13ce3d1f6ecac765b0dfa5df334 100644
--- a/lib/ModuRes/BI.v
+++ b/lib/ModuRes/BI.v
@@ -252,6 +252,13 @@ Section ComplBIProps.
     - apply or_injR.
   Qed.
 
+  Lemma impl_si P Q:
+    P → Q ⊑ P -* Q.
+  Proof.
+    apply sc_si. rewrite ->sc_and.
+    apply and_impl. reflexivity.
+  Qed.
+
   Lemma all_L {U} `{cmU : cmetric U} u (P: U -n> B) Q:
     P u ⊑ Q -> all P ⊑ Q.
   Proof.
diff --git a/lib/ModuRes/DecEnsemble.v b/lib/ModuRes/DecEnsemble.v
index 439483357c5a273e3740dc892ce916801e6c0a04..0cb4d3e9a396e1532600699fef34dcbde87ce07c 100644
--- a/lib/ModuRes/DecEnsemble.v
+++ b/lib/ModuRes/DecEnsemble.v
@@ -95,7 +95,7 @@ Notation "de1 # de2" := (de1 ∩ de2 == de_emp) (at level 70) : de_scope.
    in the context that also occurs in one of the <de>s. In this case, it can help to
    do the specialization manually, and call de_tauto directly.
  *)
-Ltac de_unfold := unfold de_cap, de_cup, de_minus, de_compl, const; unlock; simpl.
+Ltac de_unfold := unfold de_cap, de_cup, de_minus, de_compl; unlock; simpl.
 Ltac de_in_destr := simpl; 
     repeat (match goal with
             | [ |- context[dec_eq ?i ?j] ] => destruct (dec_eq i j); first try subst j; try contradiction_eq; simpl
diff --git a/lib/ModuRes/Finmap.v b/lib/ModuRes/Finmap.v
index c5da2f2cc80c79f7a1bd055c41051606484f29b6..7215550b57d84810642947250dd1252b6f1d7f8d 100644
--- a/lib/ModuRes/Finmap.v
+++ b/lib/ModuRes/Finmap.v
@@ -552,39 +552,46 @@ Section FinDom2.
               (Temp: T fdEmpty).
       Context (Tstep: forall (k:K) (v:V) (f: K -f> V), ~(k ∈ dom f) -> T f -> T (f + [fd k <- v ] )).
 
-      Definition fdRectInner: forall l f, dom f = l -> T f.
-      Proof.
-        refine (fix F (l: list K) :=
-                  match l as l return (forall f, dom f = l -> T f) with
-                  | [] => fun f Hdom => Text fdEmpty f _ Temp
-                  | k::l' => fun f Hdom => let f' := f \ k in
-                                           let Hindom: k ∈ dom f := _ in
-                                           let v' := fdLookup_indom f k Hindom in
-                                           Text (f' + [fd k <- v' ]) f _
-                                                (Tstep k v' f' _ (F l' f' _))
-                  end); clear F.
-        - split.
-          + move=>k /=. symmetry. apply fdLookup_notin_strong. rewrite Hdom. tauto.
-          + rewrite Hdom. reflexivity.
-        - rewrite Hdom. left. reflexivity.
-        - subst f'. split.
-          + move=>k'. destruct (dec_eq k k') as [EQ|NEQ].
-            * subst k'. rewrite fdStrongUpdate_eq. subst v'. symmetry. eapply fdLookup_indom_corr.
-              reflexivity.
-            * erewrite !fdStrongUpdate_neq by assumption. reflexivity.
-          + rewrite Hdom /dom /=. f_equal. rewrite /dom /= Hdom.
-            rewrite DecEq_refl.
-            assert (Hnod := dom_nodup f). rewrite Hdom in Hnod.
-            assert (Hfilt1: (filter_dupes ([])%list l') = l').
-            { apply filter_dupes_id. simpl. inversion Hnod; subst. assumption. }
-            rewrite Hfilt1. apply filter_dupes_id. assumption.
-        - subst f'. apply fdLookup_notin. rewrite fdStrongUpdate_eq. reflexivity.
-        - subst f'. rewrite /dom /fdStrongUpdate /=.
-          rewrite Hdom. destruct (dec_eq k k) as [_|NEQ]; last (exfalso; now apply NEQ).
-          apply filter_dupes_id with (dupes:=[]); simpl.
-          assert (Hno:= dom_nodup f). rewrite Hdom in Hno.
-          inversion Hno; subst. assumption.
-      Defined.
+      Program Fixpoint fdRectInner l: forall f, dom f = l -> T f :=
+        match l as l return (forall f, dom f = l -> T f) with
+        | [] => fun f Hdom => Text fdEmpty f _ Temp
+        | k::l' => fun f Hdom => let f' := f \ k in
+                                 let Hindom: k ∈ dom f := _ in
+                                 let v' := fdLookup_indom f k Hindom in
+                                 Text (f' + [fd k <- v' ]) f _
+                                      (Tstep k v' f' _ (fdRectInner l' f' _))
+        end.
+      Next Obligation.
+        split.
+        - move=>k /=. symmetry. apply fdLookup_notin_strong. rewrite Hdom. tauto.
+        - rewrite Hdom. reflexivity.
+      Qed.
+      Next Obligation.
+        rewrite Hdom. left. reflexivity.
+      Qed.
+      Next Obligation.
+        split.
+        - move=>k'. destruct (dec_eq k k') as [EQ|NEQ].
+          + subst k'. rewrite fdStrongUpdate_eq. symmetry. eapply fdLookup_indom_corr.
+            reflexivity.
+          + erewrite !fdStrongUpdate_neq by assumption. reflexivity.
+        - rewrite Hdom /dom /=. f_equal. rewrite /dom /= Hdom.
+          rewrite DecEq_refl.
+          assert (Hnod := dom_nodup f). rewrite Hdom in Hnod.
+          assert (Hfilt1: (filter_dupes ([])%list l') = l').
+          { apply filter_dupes_id. simpl. inversion Hnod; subst. assumption. }
+          rewrite Hfilt1. apply filter_dupes_id. assumption.
+      Qed.
+      Next Obligation.
+        apply fdLookup_notin. rewrite fdStrongUpdate_eq. reflexivity.
+      Qed.
+      Next Obligation.
+        rewrite /dom /fdStrongUpdate /=.
+        rewrite Hdom. destruct (dec_eq k k) as [_|NEQ]; last (exfalso; now apply NEQ).
+        apply filter_dupes_id with (dupes:=[]); simpl.
+        assert (Hno:= dom_nodup f). rewrite Hdom in Hno.
+        inversion Hno; subst. assumption.
+      Qed.
 
       Definition fdRect: forall f, T f :=
         fun f => fdRectInner (dom f) f eq_refl.
diff --git a/lib/ModuRes/SPred.v b/lib/ModuRes/SPred.v
index f89346aa21c94412e568e900f4492bc60c14abbb..b0a3fd28d9d1dcb53b9d8c2ff5df239de6a2d3ef 100644
--- a/lib/ModuRes/SPred.v
+++ b/lib/ModuRes/SPred.v
@@ -16,12 +16,10 @@ Arguments mkSPred _ _ _.
 Notation "'p[(' f ')]'" := (mkSPred f _ _).
 
 Section Props.
-  Definition sp_constF (P: Prop) :=
-    fun n => match n with
-             | O => True
-             | S _ => P end.
   Program Definition sp_const P :=
-    p[(sp_constF P)].
+    p[(fun n => match n return _ with
+                | O => True
+                | S _ => P end)].
   Next Obligation.
     move=>n m Hle. destruct m, n; simpl; tauto || inversion Hle.
   Qed.