diff --git a/README.txt b/README.txt index 6144b8653df134517b5ad34316d18b40e0949b98..6f0c8257fb7921430b53506759812d0655087cd4 100644 --- a/README.txt +++ b/README.txt @@ -51,19 +51,23 @@ CONTENTS * lang.v defines the threadpool reduction and derives some lemmas from core_lang.v - * masks.v introduces some lemmas about masks + * world_prop_recdom.v uses the ModuRes Coq library to construct the domain + for Iris propositions, satisfying the interface to the Iris domain + defined in world_prop.v - * world_prop.v uses the ModuRes Coq library to construct the domain - for Iris propositions + * iris_core.v constructs the BI structure on the Iris domain, and defines + some additional connectives (box, later, ownership). - * iris_core.v defines world satisfaction and the simpler assertions + * iris_plog.v adds the programming logic: World satisfaction, primitive view shifts, + weakest precondition. - * iris_vs.v defines view shifts and proves their rules + * iris_vs_rules.v and iris_wp_rules.v contain proofs of the primitive proof + rules for primitive view shifts and weakest precondition, respectively. - * iris_wp.v defines weakest preconditions and proves the rules for - Hoare triples + * iris_derived_rules.v derives rules for Hoare triples and view shifts + (as presented in the appendix). - * iris_meta.v proves adequacy, robust safety, and the lifting lemmas + * iris_meta.v proves adequacy and the lifting lemmas The development uses ModuRes, a Coq library by Sieczkowski et al. to solve the recursive domain equation (see the paper for a reference) @@ -76,7 +80,7 @@ REQUIREMENTS Coq We have tested the development using Coq 8.4pl4 on Linux and Mac - machines. The entire compilation took less than an hour. + machines. The entire compilation took less than 15 minutes. HOW TO COMPILE @@ -95,23 +99,23 @@ OVERVIEW OF LEMMAS RULE Coq lemma ----------------------- - VSTimeless iris_vs.v:/vsTimeless - NewInv iris_vs.v:/vsNewInv - InvOpen iris_vs.v:/vsOpen - InvClose iris_vs.v:/vsClose - VSTrans iris_vs.v:/vsTrans - VSImp iris_vs.v:/vsEnt - VSFrame iris_vs.v:/vsFrame - FpUpd iris_vs.v:/vsGhostUpd - - Ret iris_wp.v:/htRet - Bind iris_wp.v:/htBind - Frame iris_wp.v:/htFrame - AFrame iris_wp.v:/htAFrame - Csq iris_wp.v:/htCons - ACSQ iris_wp.v:/htACons - Fork iris_wp.v:/htFork + VSTimeless iris_derived_rules.v:vsTimeless + NewInv iris_derived_rules.v:vsNewInv + InvOpen iris_derived_rules.v:vsOpen + InvClose iris_derived_rules.v:vsClose + VSTrans iris_derived_rules.v:vsTrans + VSImp iris_derived_rules.v:vsEnt + VSFrame iris_derived_rules.v:vsFrame + FpUpd iris_derived_rules.v:vsGhostUpd + + Ret iris_derived_rules.v:htRet + Bind iris_derived_rules.v:htBind + Frame iris_derived_rules.v:htFrame + AFrame iris_derived_rules.v:htAFrame + Csq iris_derived_rules.v:htCons + ACSQ iris_derived_rules.v:htACons + Fork iris_derived_rules.v:htFork The main adequacy result is expressed by Theorem - iris_wp.v:/adequacy_obs. + iris_meta.v:adequacy_obs. diff --git a/iris_core.v b/iris_core.v index f3eb0d5c37785d490011062d4fe92a127099e051..be03783f5c27ca6808057cd55003943ba05d5889 100644 --- a/iris_core.v +++ b/iris_core.v @@ -295,6 +295,15 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL - move=>wf /= m Hle HP. apply (H wf (S m)); assumption || omega. Qed. + Lemma later_wand P Q: + â–¹(P -* Q) == â–¹P -* â–¹Q. + Proof. + intros w n. split; (destruct n; first (intro; exact:bpred)); intro H. + - simpl in H. move=>wf /= m Hle HP. + destruct m; first exact I. apply H; assumption || omega. + - move=>wf /= m Hle HP. apply (H wf (S m)); assumption || omega. + Qed. + Lemma later_top P: ▹⊤ == ⊤. Proof. @@ -481,12 +490,32 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL Qed. Lemma box_impl P Q: - â–¡(P → Q) ⊑ â–¡P → â–¡Q. (* The backwards direction does NOT hold. *) + â–¡(P → Q) ⊑ â–¡P → â–¡Q. + (* The backwards direction does NOT hold: We can have □⊤ → own m + without having â–¡(⊤ → own m). *) Proof. apply and_impl. rewrite -box_conj. apply box_intro. rewrite ->box_elim. apply and_impl. reflexivity. Qed. + Lemma box_wand P Q: + â–¡(P -* Q) ⊑ â–¡P -* â–¡Q. + (* The backwards direction does NOT hold: We can have □⊤ -* own m + without having â–¡(⊤ -* own m). *) + Proof. + apply sc_si. rewrite -box_star. apply box_intro. + rewrite ->box_elim. apply sc_si. reflexivity. + Qed. + + Lemma box_impl_si P Q: + â–¡(P → Q) == â–¡(P -* Q). + Proof. + apply pord_antisym. + { apply box_intro. rewrite ->box_elim. apply impl_si. } + apply box_intro. apply and_impl. rewrite <-box_conj_star. + rewrite ->box_elim. apply sc_si. reflexivity. + Qed. + Lemma box_dup P : â–¡P == â–¡P * â–¡P. Proof. @@ -663,7 +692,15 @@ Module Type IRIS_CORE (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL eapply HTQ, HPQ; [omega|omega|]. eapply dpred, HP. omega. Qed. - + + Lemma timeless_si P Q: + timeless Q ⊑ timeless (P -* Q). + Proof. + move=>w n HTQ /= w' k Ltk HPQ w'' [|[|m]] Lem HP; first exact: bpred. + { apply HPQ, HP. omega. } + eapply HTQ, HPQ; [omega|omega|]. + eapply dpred, HP. omega. + Qed. Section TimelessQuant. Context {T} `{cT : cmetric T}. diff --git a/iris_derived_rules.v b/iris_derived_rules.v index 404b686abae1ec25550c85165790ecc519856d65..89addfbc0399a42df8453e8601db095208a3b193 100644 --- a/iris_derived_rules.v +++ b/iris_derived_rules.v @@ -308,7 +308,7 @@ Module Type IRIS_DERIVED_RULES (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) Lemma htAFrame safe m m' P R e Q (HD : m # m') - (HAt : atomic e) : + (HNv : ~is_value e) : ht safe m P e Q ⊑ ht safe (m ∪ m') (P * â–¹R) e (lift_bin sc Q (umconst R)). Proof. rewrite {1}/ht. apply htIntro. diff --git a/iris_ht_rules.v b/iris_ht_rules.v index 61c2a1a2a5a2c326fb2d6fddf2e6bf47804ee22e..4a02e440d550ed0a994245103664423f98f1b31e 100644 --- a/iris_ht_rules.v +++ b/iris_ht_rules.v @@ -84,6 +84,37 @@ Module Type IRIS_HT_RULES (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: exists e' (K ∘ K0). rewrite -> HE, fill_comp. auto. } Qed. + (** Fork **) + Lemma wpFork safe m R e : + â–¹wp safe m e (umconst ⊤) * â–¹R ⊑ wp safe m (fork e) (lift_bin sc (eqV (exist _ fork_ret fork_ret_is_value)) (umconst R)). (* PDS: Why sc not and? RJ: 'cause sc is stronger. *) + Proof. + intros w n. destruct n; first (intro; exact:bpred). + intros [[w1 w2] [EQw [Hwp HLR]]]. + rewrite ->unfold_wp; intros w'; intros. + split; [| split; intros; [exfalso | split; intros ] ]. + - intros. contradiction (fork_not_value HV). + - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec; subst. + eapply fork_stuck with (K := ε); [| repeat eexists; eassumption ]; reflexivity. + - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec. + apply fork_inj in HDec; subst e'. simpl in EQw. + unfold lt in HLt. simpl in Hwp. + simpl in HLR; rewrite <- Le.le_n_Sn in HE. + do 2 eexists. split; last first. + { split. + - eapply propsMN, Hwp. omega. + - eapply wsat_dist, HE; try reflexivity; []. + apply cmra_op_dist; last reflexivity. + eapply mono_dist, EQw; omega. } + rewrite ->fill_empty; rewrite <- (le_S_n _ _ HLt) in HLR. + eapply wpValue. exists (1 w2, w2). simpl. split_conjs. + + now rewrite ra_op_unit. + + reflexivity. + + eexact HLR. + - right; right; exists e empty_ctx; rewrite ->fill_empty; reflexivity. + Grab Existential Variables. + { exact:fork_ret_is_value. } + Qed. + (** Consequence **) Lemma wpMon safe m e φ φ': φ ⊑ φ' -> wp safe m e φ ⊑ wp safe m e φ'. @@ -225,72 +256,37 @@ Module Type IRIS_HT_RULES (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: Qed. Lemma wpAFrameRes safe m R e φ - (HAt : atomic e) : + (HNv : ~is_value e) : (wp safe m e φ) * â–¹R ⊑ wp safe m e (lift_bin sc φ (umconst R)). Proof. intros w n. destruct n; first (intro; exact:bpred). move=>[[w1 w2] [/= EQr [Hwp HLR]]]. rewrite->unfold_wp; intros wf; intros. rewrite ->unfold_wp in Hwp. - edestruct (Hwp (w2 · wf) k mf) as [_ [HeS [_ Hsafe]]]; [omega|assumption| |]. + edestruct (Hwp (w2 · wf) k mf) as [_ [HeS [HeF Hsafe]]]; [omega|assumption| |]. { eapply wsat_dist, HE; first reflexivity; last reflexivity. rewrite assoc. apply cmra_op_dist; last reflexivity. eapply mono_dist, EQr. omega. } - split; [intros; exfalso | split; intros; [| split; intros; [exfalso| ] ] ]. - - contradiction (atomic_not_value e). + split; [intros; exfalso | split; intros; [| split; intros ] ]. + - contradiction. - edestruct HeS as [w'' [He' HE']]; try eassumption; []. - clear HE Hwp HeS; rewrite ->assoc in HE'. - exists (w'' · w2). split; [| eassumption]. - assert (HNV : ~ is_value ei) - by (intros HV; eapply (values_stuck HV); [symmetry; apply fill_empty | repeat eexists; eassumption]). - subst e; assert (HT := atomic_fill HAt HNV); subst K; clear HNV. - rewrite ->fill_empty in *. unfold lt in HLt. - assert (HV := atomic_step HAt HStep). - clear - He' HV HLR HLt; rename w'' into w. - eapply wpValuePvs. move=>wf; intros. - rewrite ->unfold_wp in He'. rewrite <-assoc in HE. - edestruct He' as [HVal _]; try eassumption; first de_auto_eq; []. - specialize (HVal HV); destruct HVal as [w'' [Hφ HE']]. - exists (w'' · w2). split; [| now rewrite -assoc]. - exists (w'', w2); split; simpl morph. - { rewrite [ra_op]lock /= -lock. reflexivity. } - split; first eassumption. - rewrite /const /=. eapply propsMN, HLR. omega. - - subst; eapply fork_not_atomic; eassumption. + clear HE Hwp HeS HeF; rewrite ->assoc in HE'. + exists (w'' · w2). split; [| eassumption]. subst e. + eapply wpFrameRes. exists (w'', w2). + split; first (apply sp_eq_iff; reflexivity). + split; first assumption. + eapply dpred, HLR. omega. + - edestruct HeF as [wfk [wret [He' [Ht' HE']]]]; try eassumption; []. + clear HE Hwp HeS HeF; rewrite ->assoc in HE'. subst e. + exists wfk (wret · w2). split; [| split; rewrite ->?assoc; eassumption]. + eapply wpFrameRes. exists (wret, w2). + split; first (apply sp_eq_iff; reflexivity). + split; first assumption. + eapply dpred, HLR. omega. - now auto. Qed. - (** Fork **) - Lemma wpFork safe m R e : - â–¹wp safe m e (umconst ⊤) * â–¹R ⊑ wp safe m (fork e) (lift_bin sc (eqV (exist _ fork_ret fork_ret_is_value)) (umconst R)). (* PDS: Why sc not and? RJ: 'cause sc is stronger. *) - Proof. - intros w n. destruct n; first (intro; exact:bpred). - intros [[w1 w2] [EQw [Hwp HLR]]]. - rewrite ->unfold_wp; intros w'; intros. - split; [| split; intros; [exfalso | split; intros ] ]. - - intros. contradiction (fork_not_value HV). - - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec; subst. - eapply fork_stuck with (K := ε); [| repeat eexists; eassumption ]; reflexivity. - - assert (HT := fill_fork HDec); subst K; rewrite ->fill_empty in HDec. - apply fork_inj in HDec; subst e'. simpl in EQw. - unfold lt in HLt. simpl in Hwp. - simpl in HLR; rewrite <- Le.le_n_Sn in HE. - do 2 eexists. split; last first. - { split. - - eapply propsMN, Hwp. omega. - - eapply wsat_dist, HE; try reflexivity; []. - apply cmra_op_dist; last reflexivity. - eapply mono_dist, EQw; omega. } - rewrite ->fill_empty; rewrite <- (le_S_n _ _ HLt) in HLR. - eapply wpValue. exists (1 w2, w2). simpl. split_conjs. - + now rewrite ra_op_unit. - + reflexivity. - + eexact HLR. - - right; right; exists e empty_ctx; rewrite ->fill_empty; reflexivity. - Grab Existential Variables. - { exact:fork_ret_is_value. } - Qed. - + (* Unsafe and safe weakest-pre *) Lemma wpUnsafe {m e φ} : wp true m e φ ⊑ wp false m e φ. Proof. move=> w n. move: n w e φ; elim/wf_nat_ind. move=> n IH w e φ He. diff --git a/iris_meta.v b/iris_meta.v index 01451fe8ef43ded356f02205fe4c12893e187ae3..c8d91366e8e585cf311f68cdd7f9a26500cd3156 100644 --- a/iris_meta.v +++ b/iris_meta.v @@ -184,7 +184,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL n[(fun v => pcmconst (sp_const (Q v)))]. Next Obligation. move=>v1 v2 EQv. destruct n; first exact:dist_bound. - intros w m Hlt. rewrite /= /sp_constF. destruct m; first reflexivity. + intros w m Hlt. rewrite /=. destruct m; first reflexivity. rewrite EQv. reflexivity. Qed. @@ -227,129 +227,6 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL End Adequacy. - (* Section RobustSafety. - - Implicit Types (P : Props) (i n k : nat) (safe : bool) (m : mask) (e : expr) (v : value) (Q : vPred) (r : res) (w : Wld) (σ : state). - - Implicit Types (E : expr -n> Props) (Θ : Props). - - Program Definition restrictV E : vPred := - n[(fun v => E (` v))]. - Next Obligation. - move=> v v' Hv w k r; move: Hv. - case: n=>[_ Hk | n]; first by exfalso; omega. - by move=> /= ->. - Qed. - - Definition pure e := ~ atomic e /\ forall σ e' σ', - prim_step (e,σ) (e',σ') -> - σ = σ'. - - Definition restrict_lang := forall e, - reducible e -> - atomic e \/ pure e. - - Definition fork_compat E Θ := forall e, - Θ ⊑ (E (fork e) → E e). - - Definition fill_compat E Θ := forall K e, - Θ ⊑ (E (fill K e) ↔ E e * E (fill K fork_ret)). - - Definition atomic_compat E Θ m := forall e, - atomic e -> - Θ ⊑ ht false m (E e) e (restrictV E). - - Definition pure_compat E Θ m := forall e σ e', - prim_step (e,σ) (e',σ) -> - Θ ⊑ vs m m (E e) (E e'). - - Lemma robust_safety {E Θ e m} - (LANG : restrict_lang) - (FORK : fork_compat E Θ) - (FILL : fill_compat E Θ) - (HT : atomic_compat E Θ m) - (VS : pure_compat E Θ m) : - □Θ ⊑ ht false m (E e) e (restrictV E). - Proof. - move=> wz nz rz HΘ w HSw n r HLe _ He. - have {HΘ wz nz rz HSw HLe} HΘ: Θ w n 1 by rewrite/= in HΘ; exact: propsMWN HΘ. - (* generalize IH's post-condition for the fork case *) - pose post Q := forall v w n r, (E (`v)) w n r -> (Q v) w n r. - set Q := restrictV E; have HQ: post Q by done. - move: HΘ He HQ; move: n e w r Q; elim/wf_nat_ind => n IH e w r Q HΘ He HQ. - rewrite unfold_wp; move=> w' k rf mf σ HSw HLt HD HW. - (* specialize a bit *) - move/(_ _ _ _ _ HΘ): FORK => FORK. - move/(_ _ _ _ _ _ HΘ): FILL => FILL. - move/(_ _ _)/biimpL: (FILL) => SPLIT; move/(_ _ _)/biimpR: FILL => FILL. - move/(_ _ _ _ _ _ HΘ): HT => HT. - move/(_ _ _ _ _ _ _ _ HΘ): VS => VS. - have {IH HΘ Θ} IH: forall e w' r Q, - w ⊑ w' -> (E e) w' k r -> post Q -> ((wp false m e) Q) w' k r. - { move=> ? ? ? ? HSw'; move/(propsMWN HSw' (lelt HLt)): HΘ => HΘ. exact: IH. } - have HLe: S k <= n by omega. - split. - (* e value *) - { move=> HV {FORK FILL LANG HT VS IH}. - exists w' r. split; [by reflexivity | split; [| done]]. - apply: HQ. exact: propsMWN He. } - split; [| split; [| done]]; first last. - (* e forks *) - { move=> e' K HDec {LANG FILL HT VS}; rewrite HDec {HDec} in He. - move/(SPLIT _ _ _ (prefl w) _ _ (lerefl n) unit_min) - /(propsMWN HSw (lelt HLt)): He => [re' [rK [Hr [He' HK]]]] {SPLIT}. - move/(FORK _ _ HSw _ _ (lelt HLt) unit_min): He' => He' {FORK}. - exists w' re' rK. split; [by reflexivity | split; [exact: IH | split; [exact: IH |]]]. - move: HW; rewrite -Hr. exact: wsatM. } - (* e steps *) - (* both forthcoming cases work at step-indices S k and (for the IH) k. *) - have HLt': k < S k by done. - move=> σ' ei ei' K HDec HStep; rewrite HDec {HDec} in He. - move/(SPLIT _ _ _ (prefl w) _ _ (lerefl n) unit_min) - /(propsMWN HSw HLe): He => [rei [rK [Hr [Hei HK]]]] {SPLIT}. - move: HW; rewrite -Hr -assoc => HW {Hr r}. - have HRed: reducible ei by exists σ (ei',σ'). - case: (LANG ei HRed)=>[HA {VS} | [_ HP] {HT}] {LANG HRed}; last first. - (* pure step *) - { move/(_ _ _ _ HStep): HP => HP; move: HStep HW. rewrite HP => HStep HW {HP σ}. - move/(_ _ _ _ HStep _ HSw _ _ HLe unit_min Hei): VS => VS {HStep HLe Hei}. - move: HD; rewrite -{1}(mask_union_idem m) => HD. - move/(_ _ _ _ _ _ (prefl w') HLt' HD HW): VS => [w'' [r' [HSw' [Hei' HW']]]] {HLt' HD HW}. - have HLe': k <= S k by omega. - exists w'' (r' · rK). split; [done | split; [| by move/(wsatM HLe'): HW'; rewrite assoc]]. - set HwSw'' := ptrans HSw HSw'. - apply: IH; [done | | done]. - apply: (FILL _ _ _ HwSw'' _ _ (lelt HLt) unit_min). - exists r' rK. split; first by reflexivity. - split; [ exact: propsMN Hei' | exact: propsMWN HK ]. } - (* atomic step *) - move/(_ _ HA _ HSw (S k) _ HLe unit_min Hei): HT => {Hei HLe} Hei. - (* unroll wp(ei,E)—step case—to get wp(ei',E) *) - move: Hei; rewrite {1}unfold_wp => Hei. - move/(_ _ _ _ _ _ (prefl w') HLt' HD HW): Hei => [_ [HS _]] {HLt' HW}. - have Hεei: ei = fill ε ei by rewrite fill_empty. - move/(_ _ _ _ _ Hεei HStep): HS => [w'' [r' [HSw' [Hei' HW']]]] {Hεei}. - (* unroll wp(ei',E)—value case—to get E ei' *) - move: Hei'; rewrite (fill_empty ei') {1}unfold_wp => Hei'. - move: IH HLt HK HW' Hei'; case: k => [| k'] IH HLt HK HW' Hei'. - { exists w'' r'. by split; [done | split; [exact: wpO | done]]. } - have HLt': k' < S k' by done. - move/(_ _ _ _ _ _ (prefl w'') HLt' HD HW'): Hei' => [Hv _] {HLt' HD HW'}. - move: (atomic_step HA HStep) => HV {HA HStep}. - move/(_ HV): Hv => [w''' [rei' [HSw'' [Hei' HW]]]]. - move: HW; rewrite assoc => HW. - set Hw'Sw''' := ptrans HSw' HSw''. - set HwSw''' := ptrans HSw Hw'Sw'''. - exists w''' (rei' · rK). split; [done | split; [| done]]. - apply: IH; [done | | done]. - apply: (FILL _ _ _ HwSw''' _ _ (lelt HLt) unit_min). - exists rei' rK. split; [by reflexivity | split; [done |]]. - have HLe: S k' <= S (S k') by omega. - exact: propsMWN HK. - Qed. - - End RobustSafety. *) - Section StatefulLifting. Implicit Types (P : Props) (n k : nat) (safe : bool) (m : DecEnsemble nat) (e : expr) (r : res) (σ : state) (w : Wld). @@ -502,7 +379,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL apply top_valid. apply htValid. rewrite sc_top_unit. (* Now fall back to proving this in the model. *) move=>w n. destruct n; first (intro;exact:bpred). - rewrite /= /sp_constF. move=>[[Hφ Hval] HownS]. + rewrite /=. move=>[[Hφ Hval] HownS]. eapply wpValue; []. simpl. exists σ'. split; assumption. Grab Existential Variables. diff --git a/iris_plog.v b/iris_plog.v index 7dc8d6a247e524099b8b70b8305e1633483a3aa5..a11329fa96b5496d4189b26ef1d07d5ce317aba2 100644 --- a/iris_plog.v +++ b/iris_plog.v @@ -118,11 +118,7 @@ Module Type IRIS_PLOG (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL rewrite comm -comp_finmap_move comm ra_op_unit. reflexivity. Qed. - (* Go through some struggle to even write down world satisfaction... *) - (* - Local Open Scope finmap_scope. - *) - + (** Now we define world satisfaction **) Lemma world_inv_val {wt n}: forall (pv: cmra_valid wt n) {i agP} (Heq: (Invs wt) i = n = Some agP), cmra_valid agP n. Proof. @@ -191,16 +187,13 @@ Module Type IRIS_PLOG (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL Qed. (* It may be possible to use "later_sp" here, but let's avoid indirections where possible. *) - Definition wsatF σ m w n := - match n with - | S (S n') => exists s : nat -f> Wld, - let wt := comp_finmap w s in - wsatTotal (S n') σ s m wt - | _ => True - end. - Program Definition wsat σ m w : SPred := - p[(wsatF σ m w)]. + p[(fun n => match n return _ with + | S (S n') => exists s : nat -f> Wld, + let wt := comp_finmap w s in + wsatTotal (S n') σ s m wt + | _ => True + end)]. Next Obligation. intros n1 n2 HLe. do 2 (destruct n2; first (intro; exact I)). do 2 (destruct n1; first (exfalso; omega)). @@ -501,20 +494,27 @@ Module Type IRIS_PLOG (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL rewrite unfold_wp; intros w'; intros; now inversion HLt. Qed. + (* The two definitions are actually closely related. *) Lemma wpValuePvs e (HV : is_value e) safe m φ : - pvs m m (φ (exist _ e HV)) ⊑ wp safe m e φ. + pvs m m (φ (exist _ e HV)) == wp safe m e φ. Proof. - intros w n Hvs. - rewrite unfold_wp; intros wf; intros; split; [| split; [| split] ]; intros. - - edestruct (Hvs wf k mf) as [w' [Hφ HE']]; try eassumption; first de_auto_eq; []. - exists w'. split; last assumption. - eapply spredNE, dpred, Hφ; last omega. - apply (met_morph_nonexp φ). apply dist_refl. - reflexivity. - - contradiction (values_stuck HV HDec). - repeat eexists; eassumption. - - subst e; contradiction (fork_not_value (fill_value HV)). - - unfold safeExpr. auto. + intros w n. split. + - intros Hvs. + rewrite unfold_wp; intros wf; intros; split; [| split; [| split] ]; intros. + + edestruct (Hvs wf k mf) as [w' [Hφ HE']]; try eassumption; first de_auto_eq; []. + exists w'. split; last assumption. + eapply spredNE, dpred, Hφ; last omega. + apply (met_morph_nonexp φ). apply dist_refl. + reflexivity. + + contradiction (values_stuck HV HDec). + repeat eexists; eassumption. + + subst e; contradiction (fork_not_value (fill_value HV)). + + unfold safeExpr. auto. + - move=>Hwp. intros wf; intros. + rewrite ->unfold_wp in Hwp. + edestruct (Hwp wf k mf) as [HVal _]; try eassumption; first de_auto_eq; []. + destruct (HVal HV) as [w' [Hφ Hws]]. + exists w'. split; assumption. Qed. Lemma wpValue e (HV : is_value e) safe m φ : diff --git a/lib/ModuRes/Agreement.v b/lib/ModuRes/Agreement.v index f7d0375dce2ee82420bb3e2bd622d0d311c7410e..8dae4ac6f04d7099eb608c2947e0bdcf34dae355 100644 --- a/lib/ModuRes/Agreement.v +++ b/lib/ModuRes/Agreement.v @@ -301,19 +301,14 @@ Section Agreement. move=><-. assumption. Qed. - Definition ra_ag_tsdiag_n (σ : chain ra_agree) n: T := - match σ n with - | ag_inj v' ts' tsx' => ts' n - end. - Program Definition ra_ag_compl (σ : chain ra_agree) {σc : cchain σ} := ag_inj (compl (ra_ag_vchain σ)) - (fun n => ra_ag_tsdiag_n σ n) _. + (fun n => match σ n return _ with + | ag_inj v' ts' tsx' => ts' n end) _. Next Obligation. move=>n i HLe pv. simpl. rewrite -/dist. assert (pvc: compl (ra_ag_vchain σ) i) by assumption. destruct n as [|n]; first by apply: dist_bound. - unfold ra_ag_tsdiag_n. ddes (σ i) at 1 3 as [vi tsi tsxi] deqn:EQi. ddes (σ (S n)) at 1 3 as [vSn tsSn tsxSn] deqn:EQSn. cchain_eleq σ at i (S n) lvl:(S n); move=>[EQv EQts]. @@ -336,7 +331,6 @@ Section Agreement. inversion EQi; subst. reflexivity. - move=>j HLej pv1. destruct j as [|j]; first by apply: dist_bound. - unfold ra_ag_tsdiag_n. rewrite /ra_ag_vchain /= in pv1. move:pv1. ddes (σ (S j)) at 1 3 6 as [vSSj tsSSj tsxSSj] deqn:EQSSj. intros pv1. cchain_eleq σ at (S j) i lvl:(S j); move=>[EQv EQts]. @@ -347,15 +341,6 @@ Section Agreement. Global Instance ra_ag_pcm: pcmType ra_agree. Proof. split. repeat intro. eapply ra_ag_pord. unfold compl, ra_ag_cmt, ra_ag_compl. - assert (HT: forall n, ra_ag_vchain Ï n n -> ra_ag_tsdiag_n σ n = n = ra_ag_tsdiag_n Ï n). - { move=>n pv. destruct n as [|n]; first by apply: dist_bound. - unfold ra_ag_tsdiag_n. - ddes (σ (S n)) at 1 3 as [vσn tsσn tsxσn] deqn:EQσn. - ddes (Ï (S n)) at 1 3 as [vÏn tsÏn tsxÏn] deqn:EQÏn. - specialize (H (S n)). rewrite ->ra_ag_pord in H. - rewrite <-EQσn, <-EQÏn, comm in H. destruct H as [EQv EQts]. - apply EQts. rewrite EQv. rewrite /ra_ag_vchain -EQÏn in pv. assumption. - } split. - move=>n. split; first by (intros (pv1 & pv2 & _); tauto). simpl. move=>pv. move:(pv). rewrite {1}/ra_ag_vchain. simpl. @@ -366,7 +351,12 @@ Section Agreement. ddes (σ n) at 1 3 as [vσn tsσn tsxσn] deqn:EQσn. specialize (H n). rewrite ->ra_ag_pord, <-EQÏn, <-EQσn, comm in H. destruct H as [EQv _]. rewrite <-EQv in pvÏ. destruct pvÏ as [pv1 _]. assumption. } - do 2 (split; first assumption). symmetry. apply HT. assumption. + do 2 (split; first assumption). symmetry. + destruct n as [|n]; first by apply: dist_bound. + rewrite -EQÏn. destruct (σ (S n)) as [vσn tsσn rsxσn] eqn:EQσn. + specialize (H (S n)). rewrite ->ra_ag_pord in H. + rewrite ->EQσn, <-EQÏn, comm in H. destruct H as [EQv EQts]. + apply EQts. rewrite EQv. rewrite /ra_ag_vchain -EQÏn in pv. assumption. - intros n (pv1 & pv2 & EQ). reflexivity. Qed. diff --git a/lib/ModuRes/BI.v b/lib/ModuRes/BI.v index 9efd81dfc4bf8a82c9d454626e31f97f36666055..a96d3b411849e13ce3d1f6ecac765b0dfa5df334 100644 --- a/lib/ModuRes/BI.v +++ b/lib/ModuRes/BI.v @@ -252,6 +252,13 @@ Section ComplBIProps. - apply or_injR. Qed. + Lemma impl_si P Q: + P → Q ⊑ P -* Q. + Proof. + apply sc_si. rewrite ->sc_and. + apply and_impl. reflexivity. + Qed. + Lemma all_L {U} `{cmU : cmetric U} u (P: U -n> B) Q: P u ⊑ Q -> all P ⊑ Q. Proof. diff --git a/lib/ModuRes/DecEnsemble.v b/lib/ModuRes/DecEnsemble.v index 439483357c5a273e3740dc892ce916801e6c0a04..0cb4d3e9a396e1532600699fef34dcbde87ce07c 100644 --- a/lib/ModuRes/DecEnsemble.v +++ b/lib/ModuRes/DecEnsemble.v @@ -95,7 +95,7 @@ Notation "de1 # de2" := (de1 ∩ de2 == de_emp) (at level 70) : de_scope. in the context that also occurs in one of the <de>s. In this case, it can help to do the specialization manually, and call de_tauto directly. *) -Ltac de_unfold := unfold de_cap, de_cup, de_minus, de_compl, const; unlock; simpl. +Ltac de_unfold := unfold de_cap, de_cup, de_minus, de_compl; unlock; simpl. Ltac de_in_destr := simpl; repeat (match goal with | [ |- context[dec_eq ?i ?j] ] => destruct (dec_eq i j); first try subst j; try contradiction_eq; simpl diff --git a/lib/ModuRes/Finmap.v b/lib/ModuRes/Finmap.v index c5da2f2cc80c79f7a1bd055c41051606484f29b6..7215550b57d84810642947250dd1252b6f1d7f8d 100644 --- a/lib/ModuRes/Finmap.v +++ b/lib/ModuRes/Finmap.v @@ -552,39 +552,46 @@ Section FinDom2. (Temp: T fdEmpty). Context (Tstep: forall (k:K) (v:V) (f: K -f> V), ~(k ∈ dom f) -> T f -> T (f + [fd k <- v ] )). - Definition fdRectInner: forall l f, dom f = l -> T f. - Proof. - refine (fix F (l: list K) := - match l as l return (forall f, dom f = l -> T f) with - | [] => fun f Hdom => Text fdEmpty f _ Temp - | k::l' => fun f Hdom => let f' := f \ k in - let Hindom: k ∈ dom f := _ in - let v' := fdLookup_indom f k Hindom in - Text (f' + [fd k <- v' ]) f _ - (Tstep k v' f' _ (F l' f' _)) - end); clear F. - - split. - + move=>k /=. symmetry. apply fdLookup_notin_strong. rewrite Hdom. tauto. - + rewrite Hdom. reflexivity. - - rewrite Hdom. left. reflexivity. - - subst f'. split. - + move=>k'. destruct (dec_eq k k') as [EQ|NEQ]. - * subst k'. rewrite fdStrongUpdate_eq. subst v'. symmetry. eapply fdLookup_indom_corr. - reflexivity. - * erewrite !fdStrongUpdate_neq by assumption. reflexivity. - + rewrite Hdom /dom /=. f_equal. rewrite /dom /= Hdom. - rewrite DecEq_refl. - assert (Hnod := dom_nodup f). rewrite Hdom in Hnod. - assert (Hfilt1: (filter_dupes ([])%list l') = l'). - { apply filter_dupes_id. simpl. inversion Hnod; subst. assumption. } - rewrite Hfilt1. apply filter_dupes_id. assumption. - - subst f'. apply fdLookup_notin. rewrite fdStrongUpdate_eq. reflexivity. - - subst f'. rewrite /dom /fdStrongUpdate /=. - rewrite Hdom. destruct (dec_eq k k) as [_|NEQ]; last (exfalso; now apply NEQ). - apply filter_dupes_id with (dupes:=[]); simpl. - assert (Hno:= dom_nodup f). rewrite Hdom in Hno. - inversion Hno; subst. assumption. - Defined. + Program Fixpoint fdRectInner l: forall f, dom f = l -> T f := + match l as l return (forall f, dom f = l -> T f) with + | [] => fun f Hdom => Text fdEmpty f _ Temp + | k::l' => fun f Hdom => let f' := f \ k in + let Hindom: k ∈ dom f := _ in + let v' := fdLookup_indom f k Hindom in + Text (f' + [fd k <- v' ]) f _ + (Tstep k v' f' _ (fdRectInner l' f' _)) + end. + Next Obligation. + split. + - move=>k /=. symmetry. apply fdLookup_notin_strong. rewrite Hdom. tauto. + - rewrite Hdom. reflexivity. + Qed. + Next Obligation. + rewrite Hdom. left. reflexivity. + Qed. + Next Obligation. + split. + - move=>k'. destruct (dec_eq k k') as [EQ|NEQ]. + + subst k'. rewrite fdStrongUpdate_eq. symmetry. eapply fdLookup_indom_corr. + reflexivity. + + erewrite !fdStrongUpdate_neq by assumption. reflexivity. + - rewrite Hdom /dom /=. f_equal. rewrite /dom /= Hdom. + rewrite DecEq_refl. + assert (Hnod := dom_nodup f). rewrite Hdom in Hnod. + assert (Hfilt1: (filter_dupes ([])%list l') = l'). + { apply filter_dupes_id. simpl. inversion Hnod; subst. assumption. } + rewrite Hfilt1. apply filter_dupes_id. assumption. + Qed. + Next Obligation. + apply fdLookup_notin. rewrite fdStrongUpdate_eq. reflexivity. + Qed. + Next Obligation. + rewrite /dom /fdStrongUpdate /=. + rewrite Hdom. destruct (dec_eq k k) as [_|NEQ]; last (exfalso; now apply NEQ). + apply filter_dupes_id with (dupes:=[]); simpl. + assert (Hno:= dom_nodup f). rewrite Hdom in Hno. + inversion Hno; subst. assumption. + Qed. Definition fdRect: forall f, T f := fun f => fdRectInner (dom f) f eq_refl. diff --git a/lib/ModuRes/SPred.v b/lib/ModuRes/SPred.v index f89346aa21c94412e568e900f4492bc60c14abbb..b0a3fd28d9d1dcb53b9d8c2ff5df239de6a2d3ef 100644 --- a/lib/ModuRes/SPred.v +++ b/lib/ModuRes/SPred.v @@ -16,12 +16,10 @@ Arguments mkSPred _ _ _. Notation "'p[(' f ')]'" := (mkSPred f _ _). Section Props. - Definition sp_constF (P: Prop) := - fun n => match n with - | O => True - | S _ => P end. Program Definition sp_const P := - p[(sp_constF P)]. + p[(fun n => match n return _ with + | O => True + | S _ => P end)]. Next Obligation. move=>n m Hle. destruct m, n; simpl; tauto || inversion Hle. Qed.