diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index cfe0d6106d201d1490fe587c5c6c29fc56fca8c5..923fa2097c4c2743c9648ef3571ab8b86d426aed 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -1359,8 +1359,6 @@ Section sigT. Global Instance existT_proper_2 a : Proper ((≡) ==> (≡)) (@existT A P a). Proof. apply ne_proper, _. Qed. - (* XXX Which do you prefer? *) - (* Proof. move => ?? Heq. apply (existT_proper eq_refl Heq). Qed. *) Implicit Types (c : chain sigTO). diff --git a/theories/bi/derived_laws_sbi.v b/theories/bi/derived_laws_sbi.v index a9883b41da68679ab94a6613af1cd622f9b52e89..fe60dc3a7f7ee6289979842b80f947504a754d8e 100644 --- a/theories/bi/derived_laws_sbi.v +++ b/theories/bi/derived_laws_sbi.v @@ -84,6 +84,25 @@ Qed. Lemma sig_equivI {A : ofeT} (P : A → Prop) (x y : sig P) : `x ≡ `y ⊣⊢ x ≡ y. Proof. apply (anti_symm _). apply sig_eq. apply f_equiv, _. Qed. +Section sigT_equivI. +Import EqNotations. + +Lemma sigT_equivI {A : Type} {P : A → ofeT} (x y : sigT P) : + x ≡ y ⊣⊢ + ∃ eq : projT1 x = projT1 y, rew eq in projT2 x ≡ projT2 y. +Proof. + apply (anti_symm _). + - apply (internal_eq_rewrite' x y (λ y, + ∃ eq : projT1 x = projT1 y, + rew eq in projT2 x ≡ projT2 y))%I; + [| done | exact: (exist_intro' _ _ eq_refl) ]. + move => n [a pa] [b pb] [/=]; intros -> => /= Hab. + apply exist_ne => ?. by rewrite Hab. + - apply exist_elim. move: x y => [a pa] [b pb] /=. intros ->; simpl. + apply f_equiv, _. +Qed. +End sigT_equivI. + Lemma discrete_fun_equivI {A} {B : A → ofeT} (f g : discrete_fun B) : f ≡ g ⊣⊢ ∀ x, f x ≡ g x. Proof. apply (anti_symm _); auto using fun_ext.