diff --git a/theories/bi/embedding.v b/theories/bi/embedding.v index ca132298d9690bb3c92d8206958113a63013fb7c..b42903ad94f6cfe31210790edbf689d190982382 100644 --- a/theories/bi/embedding.v +++ b/theories/bi/embedding.v @@ -37,6 +37,7 @@ Class SbiEmbedding (PROP1 PROP2 : sbi) `{BiEmbed PROP1 PROP2} := { Section bi_embedding. Context `{BiEmbedding PROP1 PROP2}. Local Notation bi_embed := (bi_embed (A:=PROP1) (B:=PROP2)). + Local Notation "⎡ P ⎤" := (bi_embed P) : bi_scope. Implicit Types P Q R : PROP1. Global Instance bi_embed_proper : Proper ((≡) ==> (≡)) bi_embed. @@ -49,7 +50,7 @@ Section bi_embedding. rewrite EQ //. Qed. - Lemma bi_embed_valid (P : PROP1) : bi_embed P ↔ P. + Lemma bi_embed_valid (P : PROP1) : ⎡P⎤%I ↔ P. Proof. by rewrite /bi_valid -bi_embed_emp; split=>?; [apply (inj bi_embed)|f_equiv]. Qed. @@ -78,7 +79,7 @@ Section bi_embedding. apply bi.equiv_spec; split; [|apply bi_embed_wand_2]. apply bi.wand_intro_l. by rewrite -bi_embed_sep bi.wand_elim_r. Qed. - Lemma bi_embed_pure φ : bi_embed ⌜φ⌠⊣⊢ ⌜φâŒ. + Lemma bi_embed_pure φ : ⎡⌜φâŒâŽ¤ ⊣⊢ ⌜φâŒ. Proof. rewrite (@bi.pure_alt PROP1) (@bi.pure_alt PROP2) bi_embed_exist. do 2 f_equiv. apply bi.equiv_spec. split; [apply bi.True_intro|]. @@ -86,7 +87,7 @@ Section bi_embedding. last apply bi.True_intro. apply bi.impl_intro_l. by rewrite right_id. Qed. - Lemma bi_embed_internal_eq (A : ofeT) (x y : A) : bi_embed (x ≡ y) ⊣⊢ x ≡ y. + Lemma bi_embed_internal_eq (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊣⊢ x ≡ y. Proof. apply bi.equiv_spec; split; [apply bi_embed_internal_eq_1|]. etrans; [apply (bi.internal_eq_rewrite x y (λ y, ⎡x ≡ y⎤%I)); solve_proper|].