diff --git a/CHANGELOG.md b/CHANGELOG.md index 6dd3439030f094624e4174c86d85b2e958a84927..54670738d570f38ba1cec56fc93ec6f4d7d1e900 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,6 +9,8 @@ lemma. * Add a construction `bi_tc` to create transitive closures of PROP-level binary relations. +* Use `binder` in notations for big ops. This means one can write things such + as `[∗ map] '(k,_) ↦ '(_,y) ∈ m, ⌜ k = y âŒ`. **Changes in `proofmode`:** diff --git a/iris/bi/notation.v b/iris/bi/notation.v index 4ca6fddcbb277d624b89931a794c556a79d69e04..d7f4110270a4ebc3e98097fe875d7ae64b0ea335 100644 --- a/iris/bi/notation.v +++ b/iris/bi/notation.v @@ -124,66 +124,68 @@ Reserved Notation "P ={ E }â–·=∗^ n Q" (** * Big Ops *) Reserved Notation "'[∗' 'list]' k ↦ x ∈ l , P" - (at level 200, l at level 10, k, x at level 1, right associativity, + (at level 200, l at level 10, k binder, x binder, right associativity, format "[∗ list] k ↦ x ∈ l , P"). Reserved Notation "'[∗' 'list]' x ∈ l , P" - (at level 200, l at level 10, x at level 1, right associativity, + (at level 200, l at level 10, x binder, right associativity, format "[∗ list] x ∈ l , P"). Reserved Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" - (at level 200, l1, l2 at level 10, k, x1, x2 at level 1, right associativity, + (at level 200, l1, l2 at level 10, k binder, x1 binder, x2 binder, + right associativity, format "[∗ list] k ↦ x1 ; x2 ∈ l1 ; l2 , P"). Reserved Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" - (at level 200, l1, l2 at level 10, x1, x2 at level 1, right associativity, + (at level 200, l1, l2 at level 10, x1 binder, x2 binder, right associativity, format "[∗ list] x1 ; x2 ∈ l1 ; l2 , P"). Reserved Notation "'[∗]' Ps" (at level 20). Reserved Notation "'[∧' 'list]' k ↦ x ∈ l , P" - (at level 200, l at level 10, k, x at level 1, right associativity, + (at level 200, l at level 10, k binder, x binder, right associativity, format "[∧ list] k ↦ x ∈ l , P"). Reserved Notation "'[∧' 'list]' x ∈ l , P" - (at level 200, l at level 10, x at level 1, right associativity, + (at level 200, l at level 10, x binder, right associativity, format "[∧ list] x ∈ l , P"). Reserved Notation "'[∧]' Ps" (at level 20). Reserved Notation "'[∨' 'list]' k ↦ x ∈ l , P" - (at level 200, l at level 10, k, x at level 1, right associativity, + (at level 200, l at level 10, k binder, x binder, right associativity, format "[∨ list] k ↦ x ∈ l , P"). Reserved Notation "'[∨' 'list]' x ∈ l , P" - (at level 200, l at level 10, x at level 1, right associativity, + (at level 200, l at level 10, x binder, right associativity, format "[∨ list] x ∈ l , P"). Reserved Notation "'[∨]' Ps" (at level 20). Reserved Notation "'[∗' 'map]' k ↦ x ∈ m , P" - (at level 200, m at level 10, k, x at level 1, right associativity, + (at level 200, m at level 10, k binder, x binder, right associativity, format "[∗ map] k ↦ x ∈ m , P"). Reserved Notation "'[∗' 'map]' x ∈ m , P" - (at level 200, m at level 10, x at level 1, right associativity, + (at level 200, m at level 10, x binder, right associativity, format "[∗ map] x ∈ m , P"). Reserved Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" - (at level 200, m1, m2 at level 10, k, x1, x2 at level 1, right associativity, + (at level 200, m1, m2 at level 10, + k binder, x1 binder, x2 binder, right associativity, format "[∗ map] k ↦ x1 ; x2 ∈ m1 ; m2 , P"). Reserved Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" - (at level 200, m1, m2 at level 10, x1, x2 at level 1, right associativity, + (at level 200, m1, m2 at level 10, x1 binder, x2 binder, right associativity, format "[∗ map] x1 ; x2 ∈ m1 ; m2 , P"). Reserved Notation "'[∧' 'map]' k ↦ x ∈ m , P" - (at level 200, m at level 10, k, x at level 1, right associativity, + (at level 200, m at level 10, k binder, x binder, right associativity, format "[∧ map] k ↦ x ∈ m , P"). Reserved Notation "'[∧' 'map]' x ∈ m , P" - (at level 200, m at level 10, x at level 1, right associativity, + (at level 200, m at level 10, x binder, right associativity, format "[∧ map] x ∈ m , P"). Reserved Notation "'[∗' 'set]' x ∈ X , P" - (at level 200, X at level 10, x at level 1, right associativity, + (at level 200, X at level 10, x binder, right associativity, format "[∗ set] x ∈ X , P"). Reserved Notation "'[∗' 'mset]' x ∈ X , P" - (at level 200, X at level 10, x at level 1, right associativity, + (at level 200, X at level 10, x binder, right associativity, format "[∗ mset] x ∈ X , P"). (** Define the scope *) diff --git a/iris/program_logic/adequacy.v b/iris/program_logic/adequacy.v index ae781fa791f05fce6e64f6b6ead3dd7191d73dbe..72f78ee78b9a08733e93e00cb05ed222e2df231e 100644 --- a/iris/program_logic/adequacy.v +++ b/iris/program_logic/adequacy.v @@ -230,7 +230,10 @@ Proof. rewrite replicate_length in Hlen2; subst. iDestruct (big_sepL2_length with "Hes'") as %Hlen3. rewrite -plus_n_O. - iApply ("Hφ" with "[//] [%] [ ] Hσ Hes'"); [congruence| |]; last first. + iApply ("Hφ" with "[//] [%] [ ] Hσ Hes'"); + (* FIXME: Different implicit types for [length] are inferred, so [lia] and + [congruence] do not work due to https://github.com/coq/coq/issues/16634 *) + [by rewrite Hlen1 Hlen3| |]; last first. { by rewrite big_sepL2_replicate_r // big_sepL_omap. } (* we run the adequacy proof again to get this assumption *) iPureIntro. intros e2 -> Hel. diff --git a/tests/bi.ref b/tests/bi.ref index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..3501bc76ecfd2a8f1b503ae9b870dda364b97a14 100644 --- a/tests/bi.ref +++ b/tests/bi.ref @@ -0,0 +1,6 @@ +The command has indeed failed with message: +In environment +PROP : bi +m : gmap nat nat +The term "m" has type "gmap nat nat" while it is expected to have type + "gmap nat Z" (cannot unify "nat" and "Z"). diff --git a/tests/bi.v b/tests/bi.v index 87f512560dbe489651c9020674a0d93f7c52ced6..299a8bd3da335b979195624b4babcb3919896555 100644 --- a/tests/bi.v +++ b/tests/bi.v @@ -1,4 +1,6 @@ -From iris.bi Require Import bi plainly. +From iris.bi Require Import bi plainly big_op. + +Unset Mangle Names. (** See https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/610 *) Lemma test_impl_persistent_1 `{!BiPlainly PROP, !BiPersistentlyImplPlainly PROP} : @@ -14,3 +16,47 @@ Proof. (* [<affine> True] is implicitly in %I scope. *) pose proof (bi.wand_iff_refl (PROP:=PROP) (<affine> True)). Abort. + +(** Some basic tests to make sure patterns work in big ops. *) +Definition big_sepM_pattern_value + {PROP : bi} (m : gmap nat (nat * nat)) : PROP := + [∗ map] '(x,y) ∈ m, ⌜ 10 = x âŒ. + +Definition big_sepM_pattern_value_tt + {PROP : bi} (m : gmap nat ()) : PROP := + [∗ map] '() ∈ m, True. + +Inductive foo := Foo (n : nat). + +Definition big_sepM_pattern_value_custom + {PROP : bi} (m : gmap nat foo) : PROP := + [∗ map] '(Foo x) ∈ m, ⌜ 10 = x âŒ. + +Definition big_sepM_pattern_key + {PROP : bi} (m : gmap (nat * nat) nat) : PROP := + [∗ map] '(k,_) ↦ _ ∈ m, ⌜ 10 = k âŒ. + +Definition big_sepM_pattern_both + {PROP : bi} (m : gmap (nat * nat) (nat * nat)) : PROP := + [∗ map] '(k,_) ↦ '(_,y) ∈ m, ⌜ k = y âŒ. + +Definition big_sepM2_pattern {PROP : bi} (m1 m2 : gmap nat (nat * nat)) : PROP := + [∗ map] '(x,_);'(_,y) ∈ m1;m2, ⌜ x = y âŒ. + +(** This fails, Coq will infer [x] to have type [Z] due to the equality, and +then sees a type mismatch with [m : gmap nat nat]. *) +Fail Definition big_sepM_implicit_type {PROP : bi} (m : gmap nat nat) : PROP := + [∗ map] x ∈ m, ⌜ 10%Z = x âŒ. + +(** With a cast, we can force Coq to type check the body with [x : nat] and +thereby insert the [nat] to [Z] coercion in the body. *) +Definition big_sepM_cast {PROP : bi} (m : gmap nat nat) : PROP := + [∗ map] (x:nat) ∈ m, ⌜ 10%Z = x âŒ. + +Section big_sepM_implicit_type. + Implicit Types x : nat. + + (** And we can do the same with an [Implicit Type]. *) + Definition big_sepM_implicit_type {PROP : bi} (m : gmap nat nat) : PROP := + [∗ map] x ∈ m, ⌜ 10%Z = x âŒ. +End big_sepM_implicit_type.