diff --git a/theories/prelude/collections.v b/theories/prelude/collections.v index f85aeba0664040b92d6d7b2deb205f18138fe86d..3f6b96a3c3e84630b61125b2bf27e5a6027d2ce7 100644 --- a/theories/prelude/collections.v +++ b/theories/prelude/collections.v @@ -643,9 +643,9 @@ Section collection. Proof. unfold_leibniz; apply union_intersection_l. Qed. Lemma union_intersection_r_L X Y Z : (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z). Proof. unfold_leibniz; apply union_intersection_r. Qed. - Lemma intersection_union_l_L X Y Z : X ∩ (Y ∪ Z) ≡ (X ∩ Y) ∪ (X ∩ Z). + Lemma intersection_union_l_L X Y Z : X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z). Proof. unfold_leibniz; apply intersection_union_l. Qed. - Lemma intersection_union_r_L X Y Z : (X ∪ Y) ∩ Z ≡ (X ∩ Z) ∪ (Y ∩ Z). + Lemma intersection_union_r_L X Y Z : (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z). Proof. unfold_leibniz; apply intersection_union_r. Qed. (** Difference *)