From 08e2d2bc57f414ac9d4d0967ef2df7d448bbdd73 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Mon, 25 Jul 2016 16:33:17 +0200 Subject: [PATCH] New notion of raw view shifts. --- algebra/upred.v | 123 +++++++++++++++++++++++++++++++++++++++++------- 1 file changed, 105 insertions(+), 18 deletions(-) diff --git a/algebra/upred.v b/algebra/upred.v index be93b5991..752d5de94 100644 --- a/algebra/upred.v +++ b/algebra/upred.v @@ -1,4 +1,4 @@ -From iris.algebra Require Export cmra. +From iris.algebra Require Export cmra updates. Local Hint Extern 1 (_ ≼ _) => etrans; [eassumption|]. Local Hint Extern 1 (_ ≼ _) => etrans; [|eassumption]. Local Hint Extern 10 (_ ≤ _) => omega. @@ -264,6 +264,21 @@ Definition uPred_valid {M A} := proj1_sig uPred_valid_aux M A. Definition uPred_valid_eq : @uPred_valid = @uPred_valid_def := proj2_sig uPred_valid_aux. +Program Definition uPred_rvs_def {M} (Q : uPred M) : uPred M := + {| uPred_holds n x := ∀ k yf, + 0 < k ≤ n → ✓{k} (x ⋅ yf) → ∃ x', ✓{k} (x' ⋅ yf) ∧ Q k x' |}. +Next Obligation. + intros M Q n x1 x2 HQ [x3 Hx] k yf Hk. + rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy. + destruct (HQ k (x3 ⋅ yf)) as (x'&?&?); [auto|by rewrite assoc|]. + exists (x' ⋅ x3); split; first by rewrite -assoc. + apply uPred_mono with x'; eauto using cmra_includedN_l. +Qed. +Next Obligation. naive_solver. Qed. +Definition uPred_rvs_aux : { x | x = @uPred_rvs_def }. by eexists. Qed. +Definition uPred_rvs {M} := proj1_sig uPred_rvs_aux M. +Definition uPred_rvs_eq : @uPred_rvs = @uPred_rvs_def := proj2_sig uPred_rvs_aux. + Notation "P ⊢ Q" := (uPred_entails P%I Q%I) (at level 99, Q at level 200, right associativity) : C_scope. Notation "(⊢)" := uPred_entails (only parsing) : C_scope. @@ -295,6 +310,8 @@ Notation "▷ P" := (uPred_later P) (at level 20, right associativity) : uPred_scope. Infix "≡" := uPred_eq : uPred_scope. Notation "✓ x" := (uPred_valid x) (at level 20) : uPred_scope. +Notation "|==r> Q" := (uPred_rvs Q) + (at level 99, Q at level 200, format "|==r> Q") : uPred_scope. Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P → Q) ∧ (Q → P))%I. Instance: Params (@uPred_iff) 1. @@ -317,7 +334,7 @@ Module uPred. Definition unseal := (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq, uPred_exist_eq, uPred_eq_eq, uPred_sep_eq, uPred_wand_eq, uPred_always_eq, - uPred_later_eq, uPred_ownM_eq, uPred_valid_eq). + uPred_later_eq, uPred_ownM_eq, uPred_valid_eq, uPred_rvs_eq). Ltac unseal := rewrite !unseal /=. Section uPred_logic. @@ -333,8 +350,8 @@ Hint Immediate uPred_in_entails. Global Instance: PreOrder (@uPred_entails M). Proof. split. - * by intros P; split=> x i. - * by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP. + - by intros P; split=> x i. + - by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP. Qed. Global Instance: AntiSymm (⊣⊢) (@uPred_entails M). Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed. @@ -405,8 +422,8 @@ Global Instance eq_ne (A : cofeT) n : Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A). Proof. intros x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *. - * by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto. - * by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto. + - by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto. + - by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto. Qed. Global Instance eq_proper (A : cofeT) : Proper ((≡) ==> (≡) ==> (⊣⊢)) (@uPred_eq M A) := ne_proper_2 _. @@ -460,6 +477,14 @@ Proof. Qed. Global Instance valid_proper {A : cmraT} : Proper ((≡) ==> (⊣⊢)) (@uPred_valid M A) := ne_proper _. +Global Instance rvs_ne n : Proper (dist n ==> dist n) (@uPred_rvs M). +Proof. + intros P Q HPQ. + unseal; split=> n' x; split; intros HP k yf ??; + destruct (HP k yf) as (x'&?&?); auto; + exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l. +Qed. +Global Instance rvs_proper : Proper ((≡) ==> (≡)) (@uPred_rvs M) := ne_proper _. Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M). Proof. unfold uPred_iff; solve_proper. Qed. Global Instance iff_proper : @@ -1065,6 +1090,78 @@ Proof. by intros; rewrite ownM_valid valid_elim. Qed. Global Instance ownM_mono : Proper (flip (≼) ==> (⊢)) (@uPred_ownM M). Proof. intros a b [b' ->]. rewrite ownM_op. eauto. Qed. +(* Equivalent definition of timeless in the model *) +Lemma timelessP_spec P : TimelessP P ↔ ∀ n x, ✓{n} x → P 0 x → P n x. +Proof. + split. + - intros HP n x ??; induction n as [|n]; auto. + move: HP; rewrite /TimelessP; unseal=> /uPred_in_entails /(_ (S n) x). + by destruct 1; auto using cmra_validN_S. + - move=> HP; rewrite /TimelessP; unseal; split=> -[|n] x /=; auto; left. + apply HP, uPred_closed with n; eauto using cmra_validN_le. +Qed. + +(* Viewshifts *) +Lemma rvs_intro P : P ⊢ |==r> P. +Proof. + unseal. split=> n x ? HP k yf ?; exists x; split; first done. + apply uPred_closed with n; eauto using cmra_validN_op_l. +Qed. +Lemma rvs_mono P Q : (P ⊢ Q) → (|==r> P) ⊢ |==r> Q. +Proof. + unseal. intros HPQ; split=> n x ? HP k yf ??. + destruct (HP k yf) as (x'&?&?); eauto. + exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l. +Qed. +Lemma rvs_timeless P : TimelessP P → ▷ P ⊢ |==r> P. +Proof. + unseal. rewrite timelessP_spec=> HP. + split=> -[|n] x ? HP' k yf ??; first lia. + exists x; split; first done. + apply HP, uPred_closed with n; eauto using cmra_validN_le. +Qed. +Lemma rvs_trans P : (|==r> |==r> P) ⊢ |==r> P. +Proof. unseal; split; naive_solver. Qed. +Lemma rvs_frame_r P R : (|==r> P) ★ R ⊢ |==r> P ★ R. +Proof. + unseal; split; intros n x ? (x1&x2&Hx&HP&?) k yf ??. + destruct (HP k (x2 ⋅ yf)) as (x'&?&?); eauto. + { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. } + exists (x' ⋅ x2); split; first by rewrite -assoc. + exists x', x2; split_and?; auto. + apply uPred_closed with n; eauto 3 using cmra_validN_op_l, cmra_validN_op_r. +Qed. +Lemma rvs_ownM_updateP x (Φ : M → Prop) : + x ~~>: Φ → uPred_ownM x ⊢ |==r> ∃ y, ■Φ y ∧ uPred_ownM y. +Proof. + unseal=> Hup; split=> -[|n] x2 ? [x3 Hx] [|k] yf ??; try lia. + destruct (Hup (S k) (Some (x3 ⋅ yf))) as (y&?&?); simpl in *. + { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. } + exists (y ⋅ x3); split; first by rewrite -assoc. + exists y; eauto using cmra_includedN_l. +Qed. + +(** * Derived rules *) +Global Instance rvs_mono' : Proper ((⊢) ==> (⊢)) (@uPred_rvs M). +Proof. intros P Q; apply rvs_mono. Qed. +Global Instance rvs_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@uPred_rvs M). +Proof. intros P Q; apply rvs_mono. Qed. +Lemma rvs_strip_rvs P Q : (P ⊢ |==r> Q) → (|==r> P) ⊢ (|==r> Q). +Proof. move=>->. by rewrite rvs_trans. Qed. +Lemma rvs_frame_l R Q : (R ★ |==r> Q) ⊢ |==r> R ★ Q. +Proof. rewrite !(comm _ R); apply rvs_frame_r. Qed. +Lemma rvs_wand_l P Q : (P -★ Q) ★ (|==r> P) ⊢ |==r> Q. +Proof. by rewrite rvs_frame_l wand_elim_l. Qed. +Lemma rvs_wand_r P Q : (|==r> P) ★ (P -★ Q) ⊢ |==r> Q. +Proof. by rewrite rvs_frame_r wand_elim_r. Qed. +Lemma rvs_sep P Q : (|==r> P) ★ (|==r> Q) ⊢ |==r> P ★ Q. +Proof. by rewrite rvs_frame_r rvs_frame_l rvs_trans. Qed. +Lemma rvs_ownM_update x y : x ~~> y → uPred_ownM x ⊢ |==r> uPred_ownM y. +Proof. + intros; rewrite (rvs_ownM_updateP _ (y =)); last by apply cmra_update_updateP. + by apply rvs_mono, exist_elim=> y'; apply pure_elim_l=> ->. +Qed. + (* Products *) Lemma prod_equivI {A B : cofeT} (x y : A * B) : x ≡ y ⊣⊢ x.1 ≡ y.1 ∧ x.2 ≡ y.2. Proof. by unseal. Qed. @@ -1096,21 +1193,11 @@ Lemma option_validI {A : cmraT} (mx : option A) : ✓ mx ⊣⊢ match mx with Some x => ✓ x | None => True end. Proof. uPred.unseal. by destruct mx. Qed. -(* Timeless *) -Lemma timelessP_spec P : TimelessP P ↔ ∀ n x, ✓{n} x → P 0 x → P n x. -Proof. - split. - - intros HP n x ??; induction n as [|n]; auto. - move: HP; rewrite /TimelessP; unseal=> /uPred_in_entails /(_ (S n) x). - by destruct 1; auto using cmra_validN_S. - - move=> HP; rewrite /TimelessP; unseal; split=> -[|n] x /=; auto; left. - apply HP, uPred_closed with n; eauto using cmra_validN_le. -Qed. - +(* Timeless instances *) Global Instance pure_timeless φ : TimelessP (■φ : uPred M)%I. Proof. by apply timelessP_spec; unseal => -[|n] x. Qed. Global Instance valid_timeless {A : cmraT} `{CMRADiscrete A} (a : A) : - TimelessP (✓ a : uPred M)%I. + TimelessP (✓ a : uPred M)%I. Proof. apply timelessP_spec; unseal=> n x /=. by rewrite -!cmra_discrete_valid_iff. Qed. -- GitLab