diff --git a/util/div_mod.v b/util/div_mod.v index ce40f9723b3fe192292bf7bdab447e689868c9d3..e82386c7cc8686b6ea4448928397a9ccd412d68a 100644 --- a/util/div_mod.v +++ b/util/div_mod.v @@ -1,124 +1,206 @@ Require Export prosa.util.nat prosa.util.subadditivity. From mathcomp Require Export ssreflect ssrbool eqtype ssrnat seq fintype bigop div ssrfun. -(** First, we define functions [div_floor] and [div_ceil], which are - divisions rounded down and up, respectively. *) -Definition div_floor (x y : nat) : nat := x %/ y. -Definition div_ceil (x y : nat) := if y %| x then x %/ y else (x %/ y).+1. +(** Additional lemmas about [divn] and [modn]. *) +Section DivMod. -(** We start with an observation that [div_ceil 0 b] is equal to - [0] for any [b]. *) -Lemma div_ceil0: - forall b, div_ceil 0 b = 0. -Proof. - intros b; unfold div_ceil. - by rewrite dvdn0; apply div0n. -Qed. + (** First, we show that if [t1 / h] is equal to [t2 / h] and [t1 <= t2], + then [t1 mod h] is bounded by [t2 mod h]. *) + Lemma eqdivn_leqmodn : + forall t1 t2 h, + t1 <= t2 -> + t1 %/ h = t2 %/ h -> + t1 %% h <= t2 %% h. + Proof. + intros * LT EQ. + destruct (posnP h) as [Z | POSh]. + { by subst; rewrite !modn0. } + { have EX: exists k, t1 + k = t2. + { exists (t2 - t1); ssrlia. } + destruct EX as [k EX]; subst t2; clear LT. + rewrite modnD //; replace (h <= t1 %% h + k %% h) with false; first by ssrlia. + symmetry; apply/negP/negP; rewrite -ltnNge. + symmetry in EQ; rewrite divnD // in EQ; move: EQ => /eqP. + rewrite -{2}[t1 %/ h]addn0 -addnA eqn_add2l addn_eq0 => /andP [_ /eqP Z2]. + by move: Z2 => /eqP; rewrite eqb0 -ltnNge. + } + Qed. -(** Next, we show that, given two positive integers [a] and [b], - [div_ceil a b] is also positive. *) -Lemma div_ceil_gt0: - forall a b, - a > 0 -> b > 0 -> - div_ceil a b > 0. -Proof. - intros a b POSa POSb. - unfold div_ceil. - destruct (b %| a) eqn:EQ; last by done. - by rewrite divn_gt0 //; apply dvdn_leq. -Qed. - -(** We show that [div_ceil] is monotone with respect to the first - argument. *) -Lemma div_ceil_monotone1: - forall d m n, - m <= n -> div_ceil m d <= div_ceil n d. -Proof. - move => d m n LEQ. - rewrite /div_ceil. - have LEQd: m %/ d <= n %/ d by apply leq_div2r. - destruct (d %| m) eqn:Mm; destruct (d %| n) eqn:Mn => //; first by ssrlia. - rewrite ltn_divRL //. - apply ltn_leq_trans with m => //. - move: (leq_trunc_div m d) => LEQm. - destruct (ltngtP (m %/ d * d) m) => //. - move: e => /eqP EQ; rewrite -dvdn_eq in EQ. - by rewrite EQ in Mm. -Qed. + (** Given two natural numbers [x] and [y], the fact that + [x / y < (x + 1) / y] implies that [y] divides [x + 1]. *) + Lemma ltdivn_dvdn : + forall x y, + x %/ y < (x + 1) %/ y -> + y %| (x + 1). + Proof. + intros ? ? LT. + destruct (posnP y) as [Z | POS]; first by subst y. + move: LT; rewrite divnD // -addn1 -addnA leq_add2l addn_gt0 => /orP [ONE | LE]. + { by destruct y as [ | []]. } + { rewrite lt0b in LE. + destruct (leqP 2 y) as [LT2 | GE2]; last by destruct y as [ | []]. + clear POS; rewrite [1 %% _]modn_small // in LE. + move: LE; rewrite leq_eqVlt => /orP [/eqP EQ | LT]. + { rewrite [x](divn_eq x y) -addnA -EQ; apply dvdn_add. + - by apply dvdn_mull, dvdnn. + - by apply dvdnn. + } + { by move: LT; rewrite -addn1 leq_add2r leqNgt ltn_pmod //; ssrlia. } + } + Qed. + + (** We prove an auxiliary lemma allowing us to change the order of + operations [_ + 1] and [_ %% h]. *) + Lemma addn1_modn_commute : + forall x h, + h > 0 -> + x %/ h = (x + 1) %/ h -> + (x + 1) %% h = x %% h + 1 . + Proof. + intros x h POS EQ. + rewrite !addnS !addn0. + rewrite addnS divnS // addn0 in EQ. + destruct (h %| x.+1) eqn:DIV ; rewrite /= in EQ; first by ssrlia. + by rewrite modnS DIV. + Qed. -(** We show that for any two integers [a] and [b], - [a] is less than [a %/ b * b + b] given that [b] is positive. *) -Lemma div_floor_add_g: - forall a b, - b > 0 -> - a < a %/ b * b + b. -Proof. - intros * POS. - specialize (divn_eq a b) => DIV. - rewrite [in X in X < _]DIV. - rewrite ltn_add2l. - by apply ltn_pmod. -Qed. + (** We show that the fact that [x / h = (x + y) / h] implies that + [h] is larder than [x mod h + y mod h]. *) + Lemma addmod_le_mod : + forall x y h, + h > 0 -> + x %/ h = (x + y) %/ h -> + h > x %% h + y %% h. + Proof. + intros x y h POS EQ. + move: EQ => /eqP; rewrite divnD // -{1}[x %/ h]addn0 -addnA eqn_add2l eq_sym addn_eq0 => /andP [/eqP Z1 /eqP Z2]. + by move: Z2 => /eqP; rewrite eqb0 -ltnNge => LT. + Qed. + +End DivMod. + +(** In this section, we define notions of [div_floor] and [div_ceil] + and prove a few basic lemmas. *) +Section DivFloorCeil. -(** Given [T] and [Δ] such that [Δ >= T > 0], we show that [div_ceil Δ T] - is strictly greater than [div_ceil (Δ - T) T]. *) -Lemma leq_div_ceil_add1: - forall Δ T, - T > 0 -> Δ >= T -> - div_ceil (Δ - T) T < div_ceil Δ T. -Proof. - intros * POS LE. rewrite /div_ceil. - have lkc: (Δ - T) %/ T < Δ %/ T. - { rewrite divnBr; last by auto. - rewrite divnn POS. - rewrite ltn_psubCl //; try ssrlia. - by rewrite divn_gt0. - } - destruct (T %| Δ) eqn:EQ1. - { have divck: (T %| Δ) -> (T %| (Δ - T)) by auto. - apply divck in EQ1 as EQ2. - rewrite EQ2; apply lkc. - } - by destruct (T %| Δ - T) eqn:EQ, (T %| Δ) eqn:EQ3; auto. -Qed. + (** We define functions [div_floor] and [div_ceil], which are + divisions rounded down and up, respectively. *) + Definition div_floor (x y : nat) : nat := x %/ y. + Definition div_ceil (x y : nat) := if y %| x then x %/ y else (x %/ y).+1. + (** We start with an observation that [div_ceil 0 b] is equal to [0] + for any [b]. *) + Lemma div_ceil0: + forall b, div_ceil 0 b = 0. + Proof. + intros b; unfold div_ceil. + by rewrite dvdn0; apply div0n. + Qed. -(** We show that the division with ceiling by a constant [T] is a subadditive function. *) -Lemma div_ceil_subadditive: - forall T, subadditive (div_ceil^~T). -Proof. - move=> T ab a b SUM. - rewrite -SUM. - destruct (T %| a) eqn:DIVa, (T %| b) eqn:DIVb. - - have DIVab: T %| a + b by apply dvdn_add. - by rewrite /div_ceil DIVa DIVb DIVab divnDl. - - have DIVab: T %| a+b = false by rewrite -DIVb; apply dvdn_addr. - by rewrite /div_ceil DIVa DIVb DIVab divnDl //=; ssrlia. - - have DIVab: T %| a+b = false by rewrite -DIVa; apply dvdn_addl. - by rewrite /div_ceil DIVa DIVb DIVab divnDr //=; ssrlia. - - destruct (T %| a + b) eqn:DIVab. - + rewrite /div_ceil DIVa DIVb DIVab. - apply leq_trans with (a %/ T + b %/T + 1); last by ssrlia. - by apply leq_divDl. - + rewrite /div_ceil DIVa DIVb DIVab. - apply leq_ltn_trans with (a %/ T + b %/T + 1); last by ssrlia. - by apply leq_divDl. -Qed. + (** Next, we show that, given two positive integers [a] and [b], + [div_ceil a b] is also positive. *) + Lemma div_ceil_gt0: + forall a b, + a > 0 -> b > 0 -> + div_ceil a b > 0. + Proof. + intros a b POSa POSb. + unfold div_ceil. + destruct (b %| a) eqn:EQ; last by done. + by rewrite divn_gt0 //; apply dvdn_leq. + Qed. + + (** We show that [div_ceil] is monotone with respect to the first + argument. *) + Lemma div_ceil_monotone1: + forall d m n, + m <= n -> div_ceil m d <= div_ceil n d. + Proof. + move => d m n LEQ. + rewrite /div_ceil. + have LEQd: m %/ d <= n %/ d by apply leq_div2r. + destruct (d %| m) eqn:Mm; destruct (d %| n) eqn:Mn => //; first by ssrlia. + rewrite ltn_divRL //. + apply ltn_leq_trans with m => //. + move: (leq_trunc_div m d) => LEQm. + destruct (ltngtP (m %/ d * d) m) => //. + move: e => /eqP EQ; rewrite -dvdn_eq in EQ. + by rewrite EQ in Mm. + Qed. + + (** Given [T] and [Δ] such that [Δ >= T > 0], we show that [div_ceil Δ T] + is strictly greater than [div_ceil (Δ - T) T]. *) + Lemma leq_div_ceil_add1: + forall Δ T, + T > 0 -> Δ >= T -> + div_ceil (Δ - T) T < div_ceil Δ T. + Proof. + intros * POS LE. rewrite /div_ceil. + have lkc: (Δ - T) %/ T < Δ %/ T. + { rewrite divnBr; last by auto. + rewrite divnn POS. + rewrite ltn_psubCl //; try ssrlia. + by rewrite divn_gt0. + } + destruct (T %| Δ) eqn:EQ1. + { have divck: (T %| Δ) -> (T %| (Δ - T)) by auto. + apply divck in EQ1 as EQ2. + rewrite EQ2; apply lkc. + } + by destruct (T %| Δ - T) eqn:EQ, (T %| Δ) eqn:EQ3; auto. + Qed. + (** We show that the division with ceiling by a constant [T] is a subadditive function. *) + Lemma div_ceil_subadditive: + forall T, subadditive (div_ceil^~T). + Proof. + move=> T ab a b SUM. + rewrite -SUM. + destruct (T %| a) eqn:DIVa, (T %| b) eqn:DIVb. + - have DIVab: T %| a + b by apply dvdn_add. + by rewrite /div_ceil DIVa DIVb DIVab divnDl. + - have DIVab: T %| a+b = false by rewrite -DIVb; apply dvdn_addr. + by rewrite /div_ceil DIVa DIVb DIVab divnDl //=; ssrlia. + - have DIVab: T %| a+b = false by rewrite -DIVa; apply dvdn_addl. + by rewrite /div_ceil DIVa DIVb DIVab divnDr //=; ssrlia. + - destruct (T %| a + b) eqn:DIVab. + + rewrite /div_ceil DIVa DIVb DIVab. + apply leq_trans with (a %/ T + b %/T + 1); last by ssrlia. + by apply leq_divDl. + + rewrite /div_ceil DIVa DIVb DIVab. + apply leq_ltn_trans with (a %/ T + b %/T + 1); last by ssrlia. + by apply leq_divDl. + Qed. + + (** We show that for any two integers [a] and [b], + [a] is less than [a %/ b * b + b] given that [b] is positive. *) + Lemma div_floor_add_g: + forall a b, + b > 0 -> + a < a %/ b * b + b. + Proof. + intros * POS. + specialize (divn_eq a b) => DIV. + rewrite [in X in X < _]DIV. + rewrite ltn_add2l. + by apply ltn_pmod. + Qed. -(** We prove a technical lemma stating that for any three integers [a, - b, c] such that [c > b], [mod] can be swapped with subtraction in - the expression [(a + c - b) %% c]. *) -Lemma mod_elim: - forall a b c, - c > b -> - (a + c - b) %% c = if a %% c >= b then (a %% c - b) else (a %% c + c - b). -Proof. - intros * BC. - have POS : c > 0 by ssrlia. - have G : a %% c < c by apply ltn_pmod. - case (b <= a %% c) eqn:CASE; rewrite -addnBA; auto; rewrite -modnDml. - - rewrite addnABC; auto. - by rewrite -modnDmr modnn addn0 modn_small; auto; ssrlia. - - by rewrite modn_small; ssrlia. -Qed. + (** We prove a technical lemma stating that for any three integers [a, b, c] + such that [c > b], [mod] can be swapped with subtraction in + the expression [(a + c - b) %% c]. *) + Lemma mod_elim: + forall a b c, + c > b -> + (a + c - b) %% c = if a %% c >= b then (a %% c - b) else (a %% c + c - b). + Proof. + intros * BC. + have POS : c > 0 by ssrlia. + have G : a %% c < c by apply ltn_pmod. + case (b <= a %% c) eqn:CASE; rewrite -addnBA; auto; rewrite -modnDml. + - rewrite addnABC; auto. + by rewrite -modnDmr modnn addn0 modn_small; auto; ssrlia. + - by rewrite modn_small; ssrlia. + Qed. + +End DivFloorCeil.