diff --git a/theories/fin_maps.v b/theories/fin_maps.v index 48aae385833f66d4077b8a72b3fce07e026f4b2d..06ef84efc34a76c875b58a0e810c31fd519d7f2a 100644 --- a/theories/fin_maps.v +++ b/theories/fin_maps.v @@ -1388,7 +1388,7 @@ Section map_filter_misc. Proof. apply map_fold_empty. Qed. Lemma map_filter_singleton i x : - P (i,x) → filter P ({[i := x]} : M A) = {[i := x]}. + P (i,x) → filter P {[i := x]} =@{M A} {[i := x]}. Proof. intros ?. rewrite <-insert_empty, map_filter_insert; [|done]. by rewrite map_filter_empty. @@ -1438,7 +1438,7 @@ Section map_filter_misc. End map_filter_misc. Lemma map_filter_comm {A} - (P : K * A → Prop) `{!∀ x, Decision (P x)} Q `{!∀ x, Decision (Q x)} (m : M A) : + (P Q : K * A → Prop) `{!∀ x, Decision (P x), !∀ x, Decision (Q x)} (m : M A) : filter P (filter Q m) = filter Q (filter P m). Proof. rewrite !map_filter_filter. apply map_filter_ext. naive_solver. Qed.