diff --git a/theories/list_numbers.v b/theories/list_numbers.v index 28c37363d517ea7fa3964de959207e9cd90c9cc2..a3fce30e976a3e40514f8360a44b64533fccd4ea 100644 --- a/theories/list_numbers.v +++ b/theories/list_numbers.v @@ -200,13 +200,10 @@ Section sum_list. Proof. induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia. Qed. - Lemma sum_list_with_in x (f: A -> nat) l: x ∈ l -> f x ≤ sum_list_with f l. + Lemma sum_list_with_in x (f: A → nat) l: x ∈ l → f x ≤ sum_list_with f l. Proof. - intros H. induction l. - - contradict H. apply not_elem_of_nil. - - cbn. rewrite elem_of_cons in H. destruct H as [H | H]. - + simplify_eq. lia. - + specialize (IHl H). lia. + intros H. induction H. + all: simpl; lia. Qed. Lemma join_reshape szs l : sum_list szs = length l → mjoin (reshape szs l) = l.