diff --git a/algebra/sts.v b/algebra/sts.v index ca2056e5a1b856fe122fac0ecf85a6b735a0d1d7..67cc00894d657e751063bbc1706254b731054748 100644 --- a/algebra/sts.v +++ b/algebra/sts.v @@ -48,9 +48,15 @@ Inductive frame_step (T : set token) (s1 s2 : state) : Prop := Hint Resolve Frame_step. Record closed (S : set state) (T : set token) : Prop := Closed { closed_ne : S ≢ ∅; - closed_disjoint s : s ∈ S → tok s ∩ T ≡ ∅; + closed_disjoint s : s ∈ S → tok s ∩ T ⊆ ∅; closed_step s1 s2 : s1 ∈ S → frame_step T s1 s2 → s2 ∈ S }. +Lemma closed_disjoint' S T s : + closed S T → s ∈ S → tok s ∩ T ≡ ∅. +Proof. + move=>Hcl Hin. move:(closed_disjoint _ _ Hcl _ Hin). + solve_elem_of+. +Qed. Lemma closed_steps S T s1 s2 : closed S T → s1 ∈ S → rtc (frame_step T) s1 s2 → s2 ∈ S. Proof. induction 3; eauto using closed_step. Qed. @@ -144,13 +150,13 @@ Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed. Lemma up_up_set s T : up s T ≡ up_set {[ s ]} T. Proof. by rewrite /up_set collection_bind_singleton. Qed. Lemma closed_up_set S T : - (∀ s, s ∈ S → tok s ∩ T ≡ ∅) → S ≢ ∅ → closed (up_set S T) T. + (∀ s, s ∈ S → tok s ∩ T ⊆ ∅) → S ≢ ∅ → closed (up_set S T) T. Proof. intros HS Hne; unfold up_set; split. * assert (∀ s, s ∈ up s T) by eauto using elem_of_up. solve_elem_of. * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs'). specialize (HS s' Hs'); clear Hs' Hne S. - induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; auto. + induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done. inversion_clear Hstep; apply IH; clear IH; auto with sts. * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s. split; [eapply rtc_r|]; eauto. diff --git a/barrier/barrier.v b/barrier/barrier.v index 6c3a9e21cb2e1e76bc5208c820666bc1237eb532..5848817392236c78773011b5a70ee3cff45ccbfb 100644 --- a/barrier/barrier.v +++ b/barrier/barrier.v @@ -15,7 +15,7 @@ Module barrier_proto. Proof. split. exact (State Low ∅). Qed. Definition change_tokens (I : gset gname) : set token := - mkSet (λ t, match t with Change i => i ∈ I | Send => False end). + mkSet (λ t, match t with Change i => i ∉ I | Send => False end). Inductive trans : relation stateT := | ChangeI p I2 I1 : trans (State p I1) (State p I2) @@ -34,7 +34,27 @@ Module barrier_proto. sts.closed sts (i_states i) {[ Change i ]}. Proof. split. - - apply non_empty_inhabited. + - apply (non_empty_inhabited (State Low {[ i ]})). rewrite !mkSet_elem_of /=. + apply lookup_singleton. + - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI. + move=>s' /elem_of_intersection. rewrite !mkSet_elem_of /=. + move=>[[Htok|Htok] ? ]; subst s'; first done. + destruct p; done. + - move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep. + (* We probably want some helper lemmas for this... *) + inversion_clear Hstep as [T1 T2 Hdisj Hstep']. + inversion_clear Hstep' as [? ? ? ? Htrans Htok1 Htok2 Htok]. + destruct Htrans; last done; move:Hs1 Hdisj Htok1 Htok2 Htok. + rewrite /= /tok /=. + intros. apply dec_stable. + assert (Change i ∉ change_tokens I1) as HI1 + by (rewrite mkSet_not_elem_of; solve_elem_of +Hs1). + assert (Change i ∉ change_tokens I2) as HI2. + { destruct p. + - solve_elem_of +Htok Hdisj HI1. + - solve_elem_of +Htok Hdisj HI1 / discriminate. } + done. + Qed. End barrier_proto. diff --git a/prelude/sets.v b/prelude/sets.v index bd8e98deb3eb8daa4dbb0d8d9a3ef64a53a99c04..50e5d9547416ff9e2b89825877ad70d2baf3c224 100644 --- a/prelude/sets.v +++ b/prelude/sets.v @@ -18,9 +18,9 @@ Instance set_difference {A} : Difference (set A) := λ X1 X2, Instance set_collection : Collection A (set A). Proof. by split; [split | |]; repeat intro. Qed. -Lemma mkSet_elem_of {A} (f : A → Prop) x : f x → x ∈ mkSet f. +Lemma mkSet_elem_of {A} (f : A → Prop) x : (x ∈ mkSet f) = f x. Proof. done. Qed. -Lemma mkSet_not_elem_of {A} (f : A → Prop) x : ¬f x → x ∉ mkSet f. +Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (¬f x). Proof. done. Qed. Instance set_ret : MRet set := λ A (x : A), {[ x ]}. diff --git a/program_logic/sts.v b/program_logic/sts.v index 4501023b0154daceae037d7892f32523bcc4e865..7ec50a99c1c72a67931d422b10026ea491466258 100644 --- a/program_logic/sts.v +++ b/program_logic/sts.v @@ -97,7 +97,7 @@ Section sts. - intros Hdisj. split_ands; first by solve_elem_of+. + done. + constructor; [done | solve_elem_of-]. - - intros _. by eapply closed_disjoint. + - intros _. by eapply closed_disjoint'. - intros _. constructor. solve_elem_of+. Qed.