diff --git a/_CoqProject b/_CoqProject index b4c35557eddd607be61fe4af9c740002632fef05..1a54a3ca2a3c98693c7a17446eaa7bc8590c067f 100644 --- a/_CoqProject +++ b/_CoqProject @@ -47,6 +47,7 @@ algebra/dra.v algebra/cofe_solver.v algebra/agree.v algebra/excl.v +algebra/iprod.v algebra/functor.v program_logic/upred.v program_logic/model.v diff --git a/algebra/cmra.v b/algebra/cmra.v index 1740a9abdb52f4467d8df0723ef5bcbe4890f6f5..84f6ea44913783ceb765c27208d0be0416d5c403 100644 --- a/algebra/cmra.v +++ b/algebra/cmra.v @@ -535,132 +535,3 @@ Proof. by split; apply includedN_preserving. * by intros n x [??]; split; simpl; apply validN_preserving. Qed. - -(** ** Indexed product *) -Section iprod_cmra. - Context {A} {B : A → cmraT}. - Implicit Types f g : iprod B. - Instance iprod_op : Op (iprod B) := λ f g x, f x ⋅ g x. - Definition iprod_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. - Instance iprod_unit : Unit (iprod B) := λ f x, unit (f x). - Definition iprod_lookup_unit f x : (unit f) x = unit (f x) := eq_refl. - Global Instance iprod_empty `{∀ x, Empty (B x)} : Empty (iprod B) := λ x, ∅. - Instance iprod_validN : ValidN (iprod B) := λ n f, ∀ x, ✓{n} (f x). - Instance iprod_minus : Minus (iprod B) := λ f g x, f x ⩪ g x. - Definition iprod_lookup_minus f g x : (f ⩪ g) x = f x ⩪ g x := eq_refl. - Lemma iprod_includedN_spec (f g : iprod B) n : f ≼{n} g ↔ ∀ x, f x ≼{n} g x. - Proof. - split. - * by intros [h Hh] x; exists (h x); rewrite /op /iprod_op (Hh x). - * intros Hh; exists (g ⩪ f)=> x; specialize (Hh x). - by rewrite /op /iprod_op /minus /iprod_minus cmra_op_minus. - Qed. - Definition iprod_cmra_mixin : CMRAMixin (iprod B). - Proof. - split. - * by intros n f1 f2 f3 Hf x; rewrite iprod_lookup_op (Hf x). - * by intros n f1 f2 Hf x; rewrite iprod_lookup_unit (Hf x). - * by intros n f1 f2 Hf ? x; rewrite -(Hf x). - * by intros n f f' Hf g g' Hg i; rewrite iprod_lookup_minus (Hf i) (Hg i). - * by intros f x. - * intros n f Hf x; apply cmra_validN_S, Hf. - * by intros f1 f2 f3 x; rewrite iprod_lookup_op associative. - * by intros f1 f2 x; rewrite iprod_lookup_op commutative. - * by intros f x; rewrite iprod_lookup_op iprod_lookup_unit cmra_unit_l. - * by intros f x; rewrite iprod_lookup_unit cmra_unit_idempotent. - * intros n f1 f2; rewrite !iprod_includedN_spec=> Hf x. - by rewrite iprod_lookup_unit; apply cmra_unit_preservingN, Hf. - * intros n f1 f2 Hf x; apply cmra_validN_op_l with (f2 x), Hf. - * intros n f1 f2; rewrite iprod_includedN_spec=> Hf x. - by rewrite iprod_lookup_op iprod_lookup_minus cmra_op_minus; try apply Hf. - Qed. - Definition iprod_cmra_extend_mixin : CMRAExtendMixin (iprod B). - Proof. - intros n f f1 f2 Hf Hf12. - set (g x := cmra_extend_op n (f x) (f1 x) (f2 x) (Hf x) (Hf12 x)). - exists ((λ x, (proj1_sig (g x)).1), (λ x, (proj1_sig (g x)).2)). - split_ands; intros x; apply (proj2_sig (g x)). - Qed. - Canonical Structure iprodRA : cmraT := - CMRAT iprod_cofe_mixin iprod_cmra_mixin iprod_cmra_extend_mixin. - Global Instance iprod_cmra_identity `{∀ x, Empty (B x)} : - (∀ x, CMRAIdentity (B x)) → CMRAIdentity iprodRA. - Proof. - intros ?; split. - * intros n x; apply cmra_empty_valid. - * by intros f x; rewrite iprod_lookup_op left_id. - * by intros f Hf x; apply (timeless _). - Qed. - - Context `{∀ x x' : A, Decision (x = x')}. - Lemma iprod_insert_updateP x (P : B x → Prop) (Q : iprod B → Prop) g y1 : - y1 ~~>: P → (∀ y2, P y2 → Q (iprod_insert x y2 g)) → - iprod_insert x y1 g ~~>: Q. - Proof. - intros Hy1 HP gf n Hg. destruct (Hy1 (gf x) n) as (y2&?&?). - { move: (Hg x). by rewrite iprod_lookup_op iprod_lookup_insert. } - exists (iprod_insert x y2 g); split; [auto|]. - intros x'; destruct (decide (x' = x)) as [->|]; - rewrite iprod_lookup_op ?iprod_lookup_insert //; []. - move: (Hg x'). by rewrite iprod_lookup_op !iprod_lookup_insert_ne. - Qed. - - Lemma iprod_insert_updateP' x (P : B x → Prop) g y1 : - y1 ~~>: P → - iprod_insert x y1 g ~~>: λ g', ∃ y2, g' = iprod_insert x y2 g ∧ P y2. - Proof. eauto using iprod_insert_updateP. Qed. - Lemma iprod_insert_update g x y1 y2 : - - y1 ~~> y2 → iprod_insert x y1 g ~~> iprod_insert x y2 g. - Proof. - rewrite !cmra_update_updateP; - eauto using iprod_insert_updateP with congruence. - Qed. - - Context `{∀ x, Empty (B x)} `{∀ x, CMRAIdentity (B x)}. - Lemma iprod_op_singleton (x : A) (y1 y2 : B x) : - iprod_singleton x y1 ⋅ iprod_singleton x y2 ≡ iprod_singleton x (y1 ⋅ y2). - Proof. - intros x'; destruct (decide (x' = x)) as [->|]. - * by rewrite iprod_lookup_op !iprod_lookup_singleton. - * by rewrite iprod_lookup_op !iprod_lookup_singleton_ne // left_id. - Qed. - - Lemma iprod_singleton_updateP x (P : B x → Prop) (Q : iprod B → Prop) y1 : - y1 ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → - iprod_singleton x y1 ~~>: Q. - Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed. - - Lemma iprod_singleton_updateP' x (P : B x → Prop) y1 : - y1 ~~>: P → - iprod_singleton x y1 ~~>: λ g', ∃ y2, g' = iprod_singleton x y2 ∧ P y2. - Proof. eauto using iprod_singleton_updateP. Qed. - - Lemma iprod_singleton_updateP_empty x (P : B x → Prop) (Q : iprod B → Prop) : - (∅ ~~>: P) → (∀ y2, P y2 → Q (iprod_singleton x y2)) → - ∅ ~~>: Q. - Proof. - intros Hx HQ gf n Hg. destruct (Hx (gf x) n) as (y2&?&?). - { apply: Hg. } - exists (iprod_singleton x y2). - split; first by apply HQ. - intros x'; destruct (decide (x' = x)) as [->|]; - rewrite iprod_lookup_op /iprod_singleton ?iprod_lookup_insert //; []. - move:(Hg x'). by rewrite iprod_lookup_insert_ne // left_id. - Qed. - - Lemma iprod_singleton_update x y1 y2 : - y1 ~~> y2 → iprod_singleton x y1 ~~> iprod_singleton x y2. - Proof. by intros; apply iprod_insert_update. Qed. -End iprod_cmra. - -Arguments iprodRA {_} _. - -Instance iprod_map_cmra_monotone {A} {B1 B2: A → cmraT} (f : ∀ x, B1 x → B2 x) : - (∀ x, CMRAMonotone (f x)) → CMRAMonotone (iprod_map f). -Proof. - split. - * intros n g1 g2; rewrite !iprod_includedN_spec=> Hf x. - rewrite /iprod_map; apply includedN_preserving, Hf. - * intros n g Hg x; rewrite /iprod_map; apply validN_preserving, Hg. -Qed. diff --git a/algebra/cofe.v b/algebra/cofe.v index 9b63f74c7125181bc8bc13f823b1cfa3441b2619..9855fb63864690716717ff34a91a62240b0735b2 100644 --- a/algebra/cofe.v +++ b/algebra/cofe.v @@ -367,95 +367,3 @@ Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B := CofeMor (later_map f). Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B). Proof. intros n f g Hf n'; apply Hf. Qed. - -(** Indexed product *) -(** Need to put this in a definition to make canonical structures to work. *) -Definition iprod {A} (B : A → cofeT) := ∀ x, B x. -Definition iprod_insert `{∀ x x' : A, Decision (x = x')} {B : A → cofeT} - (x : A) (y : B x) (f : iprod B) : iprod B := λ x', - match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end. -Definition iprod_singleton - `{∀ x x' : A, Decision (x = x')} {B : A → cofeT} `{∀ x : A, Empty (B x)} - (x : A) (y : B x) : iprod B := iprod_insert x y (λ _, ∅). - -Section iprod_cofe. - Context {A} {B : A → cofeT}. - Implicit Types x : A. - Implicit Types f g : iprod B. - Instance iprod_equiv : Equiv (iprod B) := λ f g, ∀ x, f x ≡ g x. - Instance iprod_dist : Dist (iprod B) := λ n f g, ∀ x, f x ={n}= g x. - Program Definition iprod_chain (c : chain (iprod B)) (x : A) : chain (B x) := - {| chain_car n := c n x |}. - Next Obligation. by intros c x n i ?; apply (chain_cauchy c). Qed. - Program Instance iprod_compl : Compl (iprod B) := λ c x, - compl (iprod_chain c x). - Definition iprod_cofe_mixin : CofeMixin (iprod B). - Proof. - split. - * intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|]. - intros Hfg k; apply equiv_dist; intros n; apply Hfg. - * intros n; split. - + by intros f x. - + by intros f g ? x. - + by intros f g h ?? x; transitivity (g x). - * intros n f g Hfg x; apply dist_S, Hfg. - * by intros f g x. - * intros c n x. - rewrite /compl /iprod_compl (conv_compl (iprod_chain c x) n). - apply (chain_cauchy c); lia. - Qed. - Canonical Structure iprodC : cofeT := CofeT iprod_cofe_mixin. - - Context `{∀ x x' : A, Decision (x = x')}. - Global Instance iprod_insert_ne x n : - Proper (dist n ==> dist n ==> dist n) (iprod_insert x). - Proof. - intros y1 y2 ? f1 f2 ? x'; rewrite /iprod_insert. - by destruct (decide _) as [[]|]. - Qed. - Global Instance iprod_insert_proper x : - Proper ((≡) ==> (≡) ==> (≡)) (iprod_insert x) := ne_proper_2 _. - Lemma iprod_lookup_insert f x y : (iprod_insert x y f) x = y. - Proof. - rewrite /iprod_insert; destruct (decide _) as [Hx|]; last done. - by rewrite (proof_irrel Hx eq_refl). - Qed. - Lemma iprod_lookup_insert_ne f x x' y : - x ≠x' → (iprod_insert x y f) x' = f x'. - Proof. by rewrite /iprod_insert; destruct (decide _). Qed. - - Context `{∀ x : A, Empty (B x)}. - Global Instance iprod_singleton_ne x n : - Proper (dist n ==> dist n) (iprod_singleton x). - Proof. by intros y1 y2 Hy; rewrite /iprod_singleton Hy. Qed. - Global Instance iprod_singleton_proper x : - Proper ((≡) ==> (≡)) (iprod_singleton x) := ne_proper _. - Lemma iprod_lookup_singleton x y : (iprod_singleton x y) x = y. - Proof. by rewrite /iprod_singleton iprod_lookup_insert. Qed. - Lemma iprod_lookup_singleton_ne x x' y : - x ≠x' → (iprod_singleton x y) x' = ∅. - Proof. intros; by rewrite /iprod_singleton iprod_lookup_insert_ne. Qed. -End iprod_cofe. - -Arguments iprodC {_} _. - -Definition iprod_map {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) - (g : iprod B1) : iprod B2 := λ x, f _ (g x). -Lemma iprod_map_ext {A} {B1 B2 : A → cofeT} (f1 f2 : ∀ x, B1 x → B2 x) g : - (∀ x, f1 x (g x) ≡ f2 x (g x)) → iprod_map f1 g ≡ iprod_map f2 g. -Proof. done. Qed. -Lemma iprod_map_id {A} {B: A → cofeT} (g : iprod B) : iprod_map (λ _, id) g = g. -Proof. done. Qed. -Lemma iprod_map_compose {A} {B1 B2 B3 : A → cofeT} - (f1 : ∀ x, B1 x → B2 x) (f2 : ∀ x, B2 x → B3 x) (g : iprod B1) : - iprod_map (λ x, f2 x ∘ f1 x) g = iprod_map f2 (iprod_map f1 g). -Proof. done. Qed. -Instance iprod_map_ne {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) n : - (∀ x, Proper (dist n ==> dist n) (f x)) → - Proper (dist n ==> dist n) (iprod_map f). -Proof. by intros ? y1 y2 Hy x; rewrite /iprod_map (Hy x). Qed. -Definition iprodC_map {A} {B1 B2 : A → cofeT} (f : iprod (λ x, B1 x -n> B2 x)) : - iprodC B1 -n> iprodC B2 := CofeMor (iprod_map f). -Instance iprodC_map_ne {A} {B1 B2 : A → cofeT} n : - Proper (dist n ==> dist n) (@iprodC_map A B1 B2). -Proof. intros f1 f2 Hf g x; apply Hf. Qed. diff --git a/algebra/functor.v b/algebra/functor.v index 819ca5b5f398851712ed03e33f6cd4a82dc5048e..52740e5275f2e8741299f03a43312a391859448f 100644 --- a/algebra/functor.v +++ b/algebra/functor.v @@ -39,19 +39,3 @@ Next Obligation. by intros Σ1 Σ2 A [??]; rewrite /= !ifunctor_map_id. Qed. Next Obligation. by intros Σ1 Σ2 A B C f g [??]; rewrite /= !ifunctor_map_compose. Qed. - -Program Definition iprodF {A} (Σ : A → iFunctor) : iFunctor := {| - ifunctor_car B := iprodRA (λ x, Σ x B); - ifunctor_map B1 B2 f := iprodC_map (λ x, ifunctor_map (Σ x) f); -|}. -Next Obligation. - by intros A Σ B1 B2 n f f' ? g; apply iprodC_map_ne=>x; apply ifunctor_map_ne. -Qed. -Next Obligation. - intros A Σ B g. rewrite /= -{2}(iprod_map_id g). - apply iprod_map_ext=> x; apply ifunctor_map_id. -Qed. -Next Obligation. - intros A Σ B1 B2 B3 f1 f2 g. rewrite /= -iprod_map_compose. - apply iprod_map_ext=> y; apply ifunctor_map_compose. -Qed. diff --git a/algebra/iprod.v b/algebra/iprod.v new file mode 100644 index 0000000000000000000000000000000000000000..52ceca40e1bd8287101ac74a8fde92970abd8636 --- /dev/null +++ b/algebra/iprod.v @@ -0,0 +1,238 @@ +Require Export algebra.cmra. +Require Import algebra.functor. + +(** Indexed product *) +(** Need to put this in a definition to make canonical structures to work. *) +Definition iprod {A} (B : A → cofeT) := ∀ x, B x. +Definition iprod_insert `{∀ x x' : A, Decision (x = x')} {B : A → cofeT} + (x : A) (y : B x) (f : iprod B) : iprod B := λ x', + match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end. +Definition iprod_singleton + `{∀ x x' : A, Decision (x = x')} {B : A → cofeT} `{∀ x : A, Empty (B x)} + (x : A) (y : B x) : iprod B := iprod_insert x y (λ _, ∅). + +Section iprod_cofe. + Context {A} {B : A → cofeT}. + Implicit Types x : A. + Implicit Types f g : iprod B. + Instance iprod_equiv : Equiv (iprod B) := λ f g, ∀ x, f x ≡ g x. + Instance iprod_dist : Dist (iprod B) := λ n f g, ∀ x, f x ={n}= g x. + Program Definition iprod_chain (c : chain (iprod B)) (x : A) : chain (B x) := + {| chain_car n := c n x |}. + Next Obligation. by intros c x n i ?; apply (chain_cauchy c). Qed. + Program Instance iprod_compl : Compl (iprod B) := λ c x, + compl (iprod_chain c x). + Definition iprod_cofe_mixin : CofeMixin (iprod B). + Proof. + split. + * intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|]. + intros Hfg k; apply equiv_dist; intros n; apply Hfg. + * intros n; split. + + by intros f x. + + by intros f g ? x. + + by intros f g h ?? x; transitivity (g x). + * intros n f g Hfg x; apply dist_S, Hfg. + * by intros f g x. + * intros c n x. + rewrite /compl /iprod_compl (conv_compl (iprod_chain c x) n). + apply (chain_cauchy c); lia. + Qed. + Canonical Structure iprodC : cofeT := CofeT iprod_cofe_mixin. + + Context `{∀ x x' : A, Decision (x = x')}. + Global Instance iprod_insert_ne x n : + Proper (dist n ==> dist n ==> dist n) (iprod_insert x). + Proof. + intros y1 y2 ? f1 f2 ? x'; rewrite /iprod_insert. + by destruct (decide _) as [[]|]. + Qed. + Global Instance iprod_insert_proper x : + Proper ((≡) ==> (≡) ==> (≡)) (iprod_insert x) := ne_proper_2 _. + Lemma iprod_lookup_insert f x y : (iprod_insert x y f) x = y. + Proof. + rewrite /iprod_insert; destruct (decide _) as [Hx|]; last done. + by rewrite (proof_irrel Hx eq_refl). + Qed. + Lemma iprod_lookup_insert_ne f x x' y : + x ≠x' → (iprod_insert x y f) x' = f x'. + Proof. by rewrite /iprod_insert; destruct (decide _). Qed. + + Context `{∀ x : A, Empty (B x)}. + Global Instance iprod_singleton_ne x n : + Proper (dist n ==> dist n) (iprod_singleton x). + Proof. by intros y1 y2 Hy; rewrite /iprod_singleton Hy. Qed. + Global Instance iprod_singleton_proper x : + Proper ((≡) ==> (≡)) (iprod_singleton x) := ne_proper _. + Lemma iprod_lookup_singleton x y : (iprod_singleton x y) x = y. + Proof. by rewrite /iprod_singleton iprod_lookup_insert. Qed. + Lemma iprod_lookup_singleton_ne x x' y : + x ≠x' → (iprod_singleton x y) x' = ∅. + Proof. intros; by rewrite /iprod_singleton iprod_lookup_insert_ne. Qed. +End iprod_cofe. + +Arguments iprodC {_} _. + +Definition iprod_map {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) + (g : iprod B1) : iprod B2 := λ x, f _ (g x). +Lemma iprod_map_ext {A} {B1 B2 : A → cofeT} (f1 f2 : ∀ x, B1 x → B2 x) g : + (∀ x, f1 x (g x) ≡ f2 x (g x)) → iprod_map f1 g ≡ iprod_map f2 g. +Proof. done. Qed. +Lemma iprod_map_id {A} {B: A → cofeT} (g : iprod B) : iprod_map (λ _, id) g = g. +Proof. done. Qed. +Lemma iprod_map_compose {A} {B1 B2 B3 : A → cofeT} + (f1 : ∀ x, B1 x → B2 x) (f2 : ∀ x, B2 x → B3 x) (g : iprod B1) : + iprod_map (λ x, f2 x ∘ f1 x) g = iprod_map f2 (iprod_map f1 g). +Proof. done. Qed. +Instance iprod_map_ne {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) n : + (∀ x, Proper (dist n ==> dist n) (f x)) → + Proper (dist n ==> dist n) (iprod_map f). +Proof. by intros ? y1 y2 Hy x; rewrite /iprod_map (Hy x). Qed. +Definition iprodC_map {A} {B1 B2 : A → cofeT} (f : iprod (λ x, B1 x -n> B2 x)) : + iprodC B1 -n> iprodC B2 := CofeMor (iprod_map f). +Instance iprodC_map_ne {A} {B1 B2 : A → cofeT} n : + Proper (dist n ==> dist n) (@iprodC_map A B1 B2). +Proof. intros f1 f2 Hf g x; apply Hf. Qed. + +Section iprod_cmra. + Context {A} {B : A → cmraT}. + Implicit Types f g : iprod B. + Instance iprod_op : Op (iprod B) := λ f g x, f x ⋅ g x. + Definition iprod_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. + Instance iprod_unit : Unit (iprod B) := λ f x, unit (f x). + Definition iprod_lookup_unit f x : (unit f) x = unit (f x) := eq_refl. + Global Instance iprod_empty `{∀ x, Empty (B x)} : Empty (iprod B) := λ x, ∅. + Instance iprod_validN : ValidN (iprod B) := λ n f, ∀ x, ✓{n} (f x). + Instance iprod_minus : Minus (iprod B) := λ f g x, f x ⩪ g x. + Definition iprod_lookup_minus f g x : (f ⩪ g) x = f x ⩪ g x := eq_refl. + Lemma iprod_includedN_spec (f g : iprod B) n : f ≼{n} g ↔ ∀ x, f x ≼{n} g x. + Proof. + split. + * by intros [h Hh] x; exists (h x); rewrite /op /iprod_op (Hh x). + * intros Hh; exists (g ⩪ f)=> x; specialize (Hh x). + by rewrite /op /iprod_op /minus /iprod_minus cmra_op_minus. + Qed. + Definition iprod_cmra_mixin : CMRAMixin (iprod B). + Proof. + split. + * by intros n f1 f2 f3 Hf x; rewrite iprod_lookup_op (Hf x). + * by intros n f1 f2 Hf x; rewrite iprod_lookup_unit (Hf x). + * by intros n f1 f2 Hf ? x; rewrite -(Hf x). + * by intros n f f' Hf g g' Hg i; rewrite iprod_lookup_minus (Hf i) (Hg i). + * by intros f x. + * intros n f Hf x; apply cmra_validN_S, Hf. + * by intros f1 f2 f3 x; rewrite iprod_lookup_op associative. + * by intros f1 f2 x; rewrite iprod_lookup_op commutative. + * by intros f x; rewrite iprod_lookup_op iprod_lookup_unit cmra_unit_l. + * by intros f x; rewrite iprod_lookup_unit cmra_unit_idempotent. + * intros n f1 f2; rewrite !iprod_includedN_spec=> Hf x. + by rewrite iprod_lookup_unit; apply cmra_unit_preservingN, Hf. + * intros n f1 f2 Hf x; apply cmra_validN_op_l with (f2 x), Hf. + * intros n f1 f2; rewrite iprod_includedN_spec=> Hf x. + by rewrite iprod_lookup_op iprod_lookup_minus cmra_op_minus; try apply Hf. + Qed. + Definition iprod_cmra_extend_mixin : CMRAExtendMixin (iprod B). + Proof. + intros n f f1 f2 Hf Hf12. + set (g x := cmra_extend_op n (f x) (f1 x) (f2 x) (Hf x) (Hf12 x)). + exists ((λ x, (proj1_sig (g x)).1), (λ x, (proj1_sig (g x)).2)). + split_ands; intros x; apply (proj2_sig (g x)). + Qed. + Canonical Structure iprodRA : cmraT := + CMRAT iprod_cofe_mixin iprod_cmra_mixin iprod_cmra_extend_mixin. + Global Instance iprod_cmra_identity `{∀ x, Empty (B x)} : + (∀ x, CMRAIdentity (B x)) → CMRAIdentity iprodRA. + Proof. + intros ?; split. + * intros n x; apply cmra_empty_valid. + * by intros f x; rewrite iprod_lookup_op left_id. + * by intros f Hf x; apply (timeless _). + Qed. + + Context `{∀ x x' : A, Decision (x = x')}. + Lemma iprod_insert_updateP x (P : B x → Prop) (Q : iprod B → Prop) g y1 : + y1 ~~>: P → (∀ y2, P y2 → Q (iprod_insert x y2 g)) → + iprod_insert x y1 g ~~>: Q. + Proof. + intros Hy1 HP gf n Hg. destruct (Hy1 (gf x) n) as (y2&?&?). + { move: (Hg x). by rewrite iprod_lookup_op iprod_lookup_insert. } + exists (iprod_insert x y2 g); split; [auto|]. + intros x'; destruct (decide (x' = x)) as [->|]; + rewrite iprod_lookup_op ?iprod_lookup_insert //; []. + move: (Hg x'). by rewrite iprod_lookup_op !iprod_lookup_insert_ne. + Qed. + + Lemma iprod_insert_updateP' x (P : B x → Prop) g y1 : + y1 ~~>: P → + iprod_insert x y1 g ~~>: λ g', ∃ y2, g' = iprod_insert x y2 g ∧ P y2. + Proof. eauto using iprod_insert_updateP. Qed. + Lemma iprod_insert_update g x y1 y2 : + + y1 ~~> y2 → iprod_insert x y1 g ~~> iprod_insert x y2 g. + Proof. + rewrite !cmra_update_updateP; + eauto using iprod_insert_updateP with congruence. + Qed. + + Context `{∀ x, Empty (B x)} `{∀ x, CMRAIdentity (B x)}. + Lemma iprod_op_singleton (x : A) (y1 y2 : B x) : + iprod_singleton x y1 ⋅ iprod_singleton x y2 ≡ iprod_singleton x (y1 ⋅ y2). + Proof. + intros x'; destruct (decide (x' = x)) as [->|]. + * by rewrite iprod_lookup_op !iprod_lookup_singleton. + * by rewrite iprod_lookup_op !iprod_lookup_singleton_ne // left_id. + Qed. + + Lemma iprod_singleton_updateP x (P : B x → Prop) (Q : iprod B → Prop) y1 : + y1 ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → + iprod_singleton x y1 ~~>: Q. + Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed. + + Lemma iprod_singleton_updateP' x (P : B x → Prop) y1 : + y1 ~~>: P → + iprod_singleton x y1 ~~>: λ g', ∃ y2, g' = iprod_singleton x y2 ∧ P y2. + Proof. eauto using iprod_singleton_updateP. Qed. + + Lemma iprod_singleton_updateP_empty x (P : B x → Prop) (Q : iprod B → Prop) : + (∅ ~~>: P) → (∀ y2, P y2 → Q (iprod_singleton x y2)) → + ∅ ~~>: Q. + Proof. + intros Hx HQ gf n Hg. destruct (Hx (gf x) n) as (y2&?&?). + { apply: Hg. } + exists (iprod_singleton x y2). + split; first by apply HQ. + intros x'; destruct (decide (x' = x)) as [->|]; + rewrite iprod_lookup_op /iprod_singleton ?iprod_lookup_insert //; []. + move:(Hg x'). by rewrite iprod_lookup_insert_ne // left_id. + Qed. + + Lemma iprod_singleton_update x y1 y2 : + y1 ~~> y2 → iprod_singleton x y1 ~~> iprod_singleton x y2. + Proof. by intros; apply iprod_insert_update. Qed. +End iprod_cmra. + +Arguments iprodRA {_} _. + +Instance iprod_map_cmra_monotone {A} {B1 B2: A → cmraT} (f : ∀ x, B1 x → B2 x) : + (∀ x, CMRAMonotone (f x)) → CMRAMonotone (iprod_map f). +Proof. + split. + * intros n g1 g2; rewrite !iprod_includedN_spec=> Hf x. + rewrite /iprod_map; apply includedN_preserving, Hf. + * intros n g Hg x; rewrite /iprod_map; apply validN_preserving, Hg. +Qed. + +Program Definition iprodF {A} (Σ : A → iFunctor) : iFunctor := {| + ifunctor_car B := iprodRA (λ x, Σ x B); + ifunctor_map B1 B2 f := iprodC_map (λ x, ifunctor_map (Σ x) f); +|}. +Next Obligation. + by intros A Σ B1 B2 n f f' ? g; apply iprodC_map_ne=>x; apply ifunctor_map_ne. +Qed. +Next Obligation. + intros A Σ B g. rewrite /= -{2}(iprod_map_id g). + apply iprod_map_ext=> x; apply ifunctor_map_id. +Qed. +Next Obligation. + intros A Σ B1 B2 B3 f1 f2 g. rewrite /= -iprod_map_compose. + apply iprod_map_ext=> y; apply ifunctor_map_compose. +Qed.