diff --git a/theories/algebra/auth.v b/theories/algebra/auth.v index 13f796c51362d1e11e886ccabf8e4d725527137d..b6ea8744f2f07ea7e6f3371aaafd7e20b96cfc0d 100644 --- a/theories/algebra/auth.v +++ b/theories/algebra/auth.v @@ -16,7 +16,10 @@ agreement, i.e., [✓ (â—{p1} a1 â‹… â—{p2} a2) → a1 ≡ a2]. *) Definition auth_view_rel_raw {A : ucmraT} (n : nat) (a b : A) : Prop := b ≼{n} a ∧ ✓{n} a. Lemma auth_view_rel_raw_mono (A : ucmraT) n1 n2 (a1 a2 b1 b2 : A) : - auth_view_rel_raw n1 a1 b1 → a1 ≡{n2}≡ a2 → b2 ≼{n2} b1 → n2 ≤ n1 → + auth_view_rel_raw n1 a1 b1 → + a1 ≡{n2}≡ a2 → + b2 ≼{n2} b1 → + n2 ≤ n1 → auth_view_rel_raw n2 a2 b2. Proof. intros [??] Ha12 ??. split.