From ed2b857ec1ad8b94c0a0fef14237f2e98e0f229b Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 15 Jun 2021 22:14:54 +0200 Subject: [PATCH] Bump stdpp. --- coq-iris.opam | 2 +- iris/algebra/cmra.v | 12 ++++++------ iris/algebra/cmra_big_op.v | 6 +++--- iris/algebra/gmap.v | 2 +- 4 files changed, 11 insertions(+), 11 deletions(-) diff --git a/coq-iris.opam b/coq-iris.opam index faed3ff40..07f5e11b1 100644 --- a/coq-iris.opam +++ b/coq-iris.opam @@ -15,7 +15,7 @@ iris.prelude, iris.algebra, iris.si_logic, iris.bi, iris.proofmode, iris.base_lo depends: [ "coq" { (>= "8.12" & < "8.14~") | (= "dev") } - "coq-stdpp" { (= "dev.2021-06-16.0.fc5f75e5") | (= "dev") } + "coq-stdpp" { (= "dev.2021-06-17.3.3bddee70") | (= "dev") } ] build: ["./make-package" "iris" "-j%{jobs}%"] diff --git a/iris/algebra/cmra.v b/iris/algebra/cmra.v index 5dde79ec0..07f46ded4 100644 --- a/iris/algebra/cmra.v +++ b/iris/algebra/cmra.v @@ -341,13 +341,13 @@ Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed. (** ** Core *) Lemma cmra_pcore_l' x cx : pcore x ≡ Some cx → cx ⋅ x ≡ x. -Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed. +Proof. intros (cx'&?&<-)%Some_equiv_eq. by apply cmra_pcore_l. Qed. Lemma cmra_pcore_r x cx : pcore x = Some cx → x ⋅ cx ≡ x. Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. Lemma cmra_pcore_r' x cx : pcore x ≡ Some cx → x ⋅ cx ≡ x. -Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. +Proof. intros (cx'&?&<-)%Some_equiv_eq. by apply cmra_pcore_r. Qed. Lemma cmra_pcore_idemp' x cx : pcore x ≡ Some cx → pcore cx ≡ Some cx. -Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. +Proof. intros (cx'&?&<-)%Some_equiv_eq. eauto using cmra_pcore_idemp. Qed. Lemma cmra_pcore_dup x cx : pcore x = Some cx → cx ≡ cx ⋅ cx. Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed. Lemma cmra_pcore_dup' x cx : pcore x ≡ Some cx → cx ≡ cx ⋅ cx. @@ -412,9 +412,9 @@ Proof. rewrite (comm op); apply cmra_included_l. Qed. Lemma cmra_pcore_mono' x y cx : x ≼ y → pcore x ≡ Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy. Proof. - intros ? (cx'&?&Hcx)%equiv_Some_inv_r'. + intros ? (cx'&?&Hcx)%Some_equiv_eq. destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto. - exists cy; by rewrite Hcx. + exists cy; by rewrite -Hcx. Qed. Lemma cmra_pcore_monoN' n x y cx : x ≼{n} y → pcore x ≡{n}≡ Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼{n} cy. @@ -1126,7 +1126,7 @@ Section prod. Lemma prod_pcore_Some' (x cx : A * B) : pcore x ≡ Some cx ↔ pcore (x.1) ≡ Some (cx.1) ∧ pcore (x.2) ≡ Some (cx.2). Proof. - split; [by intros (cx'&[-> ->]%prod_pcore_Some&->)%equiv_Some_inv_r'|]. + split; [by intros (cx'&[-> ->]%prod_pcore_Some&<-)%Some_equiv_eq|]. rewrite {3}/pcore /prod_pcore_instance. (* TODO: use setoid rewrite *) intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2. by constructor. diff --git a/iris/algebra/cmra_big_op.v b/iris/algebra/cmra_big_op.v index 71236bbaa..282094e77 100644 --- a/iris/algebra/cmra_big_op.v +++ b/iris/algebra/cmra_big_op.v @@ -14,7 +14,7 @@ Lemma big_opM_None {M : cmra} `{Countable K} {A} (f : K → A → option M) m : ([^op map] k↦x ∈ m, f k x) = None ↔ ∀ k x, m !! k = Some x → f k x = None. Proof. induction m as [|i x m ? IH] using map_ind=> /=; first by rewrite big_opM_eq. - rewrite -equiv_None big_opM_insert // equiv_None op_None IH. split. + rewrite -None_equiv_eq big_opM_insert // None_equiv_eq op_None IH. split. { intros [??] k y. rewrite lookup_insert_Some; naive_solver. } intros Hm; split. - apply (Hm i). by simplify_map_eq. @@ -24,13 +24,13 @@ Lemma big_opS_None {M : cmra} `{Countable A} (f : A → option M) X : ([^op set] x ∈ X, f x) = None ↔ ∀ x, x ∈ X → f x = None. Proof. induction X as [|x X ? IH] using set_ind_L; [by rewrite big_opS_eq |]. - rewrite -equiv_None big_opS_insert // equiv_None op_None IH. set_solver. + rewrite -None_equiv_eq big_opS_insert // None_equiv_eq op_None IH. set_solver. Qed. Lemma big_opMS_None {M : cmra} `{Countable A} (f : A → option M) X : ([^op mset] x ∈ X, f x) = None ↔ ∀ x, x ∈ X → f x = None. Proof. induction X as [|x X IH] using gmultiset_ind. { rewrite big_opMS_empty. multiset_solver. } - rewrite -equiv_None big_opMS_disj_union big_opMS_singleton equiv_None op_None IH. + rewrite -None_equiv_eq big_opMS_disj_union big_opMS_singleton None_equiv_eq op_None IH. multiset_solver. Qed. diff --git a/iris/algebra/gmap.v b/iris/algebra/gmap.v index a61482362..55c589952 100644 --- a/iris/algebra/gmap.v +++ b/iris/algebra/gmap.v @@ -299,7 +299,7 @@ Proof. apply omap_singleton_Some. Qed. Lemma singleton_core' (i : K) (x : A) cx : pcore x ≡ Some cx → core {[ i := x ]} ≡@{gmap K A} {[ i := cx ]}. Proof. - intros (cx'&?&->)%equiv_Some_inv_r'. by rewrite (singleton_core _ _ cx'). + intros (cx'&?&<-)%Some_equiv_eq. by rewrite (singleton_core _ _ cx'). Qed. Lemma singleton_core_total `{!CmraTotal A} (i : K) (x : A) : core {[ i := x ]} =@{gmap K A} {[ i := core x ]}. -- GitLab