diff --git a/theories/bi/big_op.v b/theories/bi/big_op.v index 5f2bc2e77d3ddd1171110558857583e9731a2f10..a084702a09e155d717fe00b2e0a433f2991738b8 100644 --- a/theories/bi/big_op.v +++ b/theories/bi/big_op.v @@ -1704,7 +1704,10 @@ Section gmultiset. Lemma big_sepMS_subseteq `{BiAffine PROP} Φ X Y : Y ⊆ X → ([∗ mset] x ∈ X, Φ x) ⊢ [∗ mset] x ∈ Y, Φ x. - Proof. rewrite big_opMS_eq. intros. by apply big_sepL_submseteq, gmultiset_elements_submseteq. Qed. + Proof. + intros. rewrite big_opMS_eq. + by apply big_sepL_submseteq, gmultiset_elements_submseteq. + Qed. (** The lemmas [big_sepMS_mono], [big_sepMS_ne] and [big_sepMS_proper] are more generic than the instances as they also give [l !! k = Some y] in the premise. *)