diff --git a/prelude/sets.v b/prelude/sets.v index 3236b3df0f34c47aa88d21d58aa4d3b9778c1ca0..50e5d9547416ff9e2b89825877ad70d2baf3c224 100644 --- a/prelude/sets.v +++ b/prelude/sets.v @@ -20,7 +20,7 @@ Proof. by split; [split | |]; repeat intro. Qed. Lemma mkSet_elem_of {A} (f : A → Prop) x : (x ∈ mkSet f) = f x. Proof. done. Qed. -Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (~f x). +Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (¬f x). Proof. done. Qed. Instance set_ret : MRet set := λ A (x : A), {[ x ]}.