From ab92f91e9ced5e56d6a77330d116fb49958c2895 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Fri, 13 May 2022 13:51:26 +0200 Subject: [PATCH] Add some line breaks to very long lines. --- iris/bi/monpred.v | 124 ++++++++++++++++++++++++++++++++-------------- 1 file changed, 86 insertions(+), 38 deletions(-) diff --git a/iris/bi/monpred.v b/iris/bi/monpred.v index e58f0e8ce..d6c91746c 100644 --- a/iris/bi/monpred.v +++ b/iris/bi/monpred.v @@ -59,7 +59,9 @@ Section Ofe_Cofe_def. Proof. by split; [intros []|]. Qed. Definition monPred_ofe_mixin : OfeMixin monPred. - Proof. by apply (iso_ofe_mixin monPred_sig monPred_sig_equiv monPred_sig_dist). Qed. + Proof. + by apply (iso_ofe_mixin monPred_sig monPred_sig_equiv monPred_sig_dist). + Qed. Canonical Structure monPredO := Ofe monPred monPred_ofe_mixin. @@ -401,7 +403,9 @@ Proof. by rewrite /bi_affinely monPred_at_and monPred_at_emp. Qed. Lemma monPred_at_affinely_if i p P : (<affine>?p P) i ⊣⊢ <affine>?p (P i). Proof. destruct p=>//=. apply monPred_at_affinely. Qed. Lemma monPred_at_intuitionistically i P : (□ P) i ⊣⊢ □ (P i). -Proof. by rewrite /bi_intuitionistically monPred_at_affinely monPred_at_persistently. Qed. +Proof. + by rewrite /bi_intuitionistically monPred_at_affinely monPred_at_persistently. +Qed. Lemma monPred_at_intuitionistically_if i p P : (□?p P) i ⊣⊢ □?p (P i). Proof. destruct p=>//=. apply monPred_at_intuitionistically. Qed. @@ -501,11 +505,13 @@ Proof. by unseal. Qed. Global Instance monPred_objectively_ne : NonExpansive (@monPred_objectively I PROP). Proof. rewrite monPred_objectively_unfold. solve_proper. Qed. -Global Instance monPred_objectively_proper : Proper ((≡) ==> (≡)) (@monPred_objectively I PROP). +Global Instance monPred_objectively_proper : + Proper ((≡) ==> (≡)) (@monPred_objectively I PROP). Proof. apply (ne_proper _). Qed. Lemma monPred_objectively_mono P Q : (P ⊢ Q) → (<obj> P ⊢ <obj> Q). Proof. rewrite monPred_objectively_unfold. solve_proper. Qed. -Global Instance monPred_objectively_mono' : Proper ((⊢) ==> (⊢)) (@monPred_objectively I PROP). +Global Instance monPred_objectively_mono' : + Proper ((⊢) ==> (⊢)) (@monPred_objectively I PROP). Proof. intros ???. by apply monPred_objectively_mono. Qed. Global Instance monPred_objectively_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@monPred_objectively I PROP). @@ -521,19 +527,23 @@ Proof. rewrite monPred_objectively_unfold. apply _. Qed. Global Instance monPred_subjectively_ne : NonExpansive (@monPred_subjectively I PROP). Proof. rewrite monPred_subjectively_unfold. solve_proper. Qed. -Global Instance monPred_subjectively_proper : Proper ((≡) ==> (≡)) (@monPred_subjectively I PROP). +Global Instance monPred_subjectively_proper : + Proper ((≡) ==> (≡)) (@monPred_subjectively I PROP). Proof. apply (ne_proper _). Qed. Lemma monPred_subjectively_mono P Q : (P ⊢ Q) → <subj> P ⊢ <subj> Q. Proof. rewrite monPred_subjectively_unfold. solve_proper. Qed. -Global Instance monPred_subjectively_mono' : Proper ((⊢) ==> (⊢)) (@monPred_subjectively I PROP). +Global Instance monPred_subjectively_mono' : + Proper ((⊢) ==> (⊢)) (@monPred_subjectively I PROP). Proof. intros ???. by apply monPred_subjectively_mono. Qed. Global Instance monPred_subjectively_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@monPred_subjectively I PROP). Proof. intros ???. by apply monPred_subjectively_mono. Qed. -Global Instance monPred_subjectively_persistent P : Persistent P → Persistent (<subj> P). +Global Instance monPred_subjectively_persistent P : + Persistent P → Persistent (<subj> P). Proof. rewrite monPred_subjectively_unfold. apply _. Qed. -Global Instance monPred_subjectively_absorbing P : Absorbing P → Absorbing (<subj> P). +Global Instance monPred_subjectively_absorbing P : + Absorbing P → Absorbing (<subj> P). Proof. rewrite monPred_subjectively_unfold. apply _. Qed. Global Instance monPred_subjectively_affine P : Affine P → Affine (<subj> P). Proof. rewrite monPred_subjectively_unfold. apply _. Qed. @@ -547,7 +557,8 @@ Proof. unseal. split=>i /=. by apply bi.forall_intro=>_. Qed. -Lemma monPred_objectively_forall {A} (Φ : A → monPred) : <obj> (∀ x, Φ x) ⊣⊢ ∀ x, <obj> (Φ x). +Lemma monPred_objectively_forall {A} (Φ : A → monPred) : + <obj> (∀ x, Φ x) ⊣⊢ ∀ x, <obj> (Φ x). Proof. unseal. split=>i. apply bi.equiv_entails; split=>/=; do 2 apply bi.forall_intro=>?; by do 2 rewrite bi.forall_elim. @@ -571,8 +582,11 @@ Proof. Qed. Lemma monPred_objectively_sep_2 P Q : <obj> P ∗ <obj> Q ⊢ <obj> (P ∗ Q). -Proof. unseal. split=>i /=. apply bi.forall_intro=>?. by rewrite !bi.forall_elim. Qed. -Lemma monPred_objectively_sep `{BiIndexBottom bot} P Q : <obj> (P ∗ Q) ⊣⊢ <obj> P ∗ <obj> Q. +Proof. + unseal. split=>i /=. apply bi.forall_intro=>?. by rewrite !bi.forall_elim. +Qed. +Lemma monPred_objectively_sep `{BiIndexBottom bot} P Q : + <obj> (P ∗ Q) ⊣⊢ <obj> P ∗ <obj> Q. Proof. apply bi.equiv_entails, conj, monPred_objectively_sep_2. unseal. split=>i /=. rewrite (bi.forall_elim bot). by f_equiv; apply bi.forall_intro=>j; f_equiv. @@ -600,7 +614,8 @@ Proof. - apply bi.and_elim_l. - apply bi.and_elim_r. Qed. -Lemma monPred_subjectively_exist {A} (Φ : A → monPred) : <subj> (∃ x, Φ x) ⊣⊢ ∃ x, <subj> (Φ x). +Lemma monPred_subjectively_exist {A} (Φ : A → monPred) : + <subj> (∃ x, Φ x) ⊣⊢ ∃ x, <subj> (Φ x). Proof. unseal. split=>i. apply bi.equiv_entails; split=>/=; do 2 apply bi.exist_elim=>?; by do 2 rewrite -bi.exist_intro. @@ -615,7 +630,9 @@ Proof. Qed. Lemma monPred_subjectively_sep P Q : <subj> (P ∗ Q) ⊢ <subj> P ∗ <subj> Q. -Proof. unseal. split=>i /=. apply bi.exist_elim=>?. by rewrite -!bi.exist_intro. Qed. +Proof. + unseal. split=>i /=. apply bi.exist_elim=>?. by rewrite -!bi.exist_intro. +Qed. Lemma monPred_subjectively_idemp P : <subj> <subj> P ⊣⊢ <subj> P. Proof. @@ -645,11 +662,14 @@ Proof. intros ??. by unseal. Qed. Global Instance subjectively_objective P : Objective (<subj> P). Proof. intros ??. by unseal. Qed. -Global Instance and_objective P Q `{!Objective P, !Objective Q} : Objective (P ∧ Q). +Global Instance and_objective P Q `{!Objective P, !Objective Q} : + Objective (P ∧ Q). Proof. intros i j. unseal. by rewrite !(objective_at _ i j). Qed. -Global Instance or_objective P Q `{!Objective P, !Objective Q} : Objective (P ∨ Q). +Global Instance or_objective P Q `{!Objective P, !Objective Q} : + Objective (P ∨ Q). Proof. intros i j. by rewrite !monPred_at_or !(objective_at _ i j). Qed. -Global Instance impl_objective P Q `{!Objective P, !Objective Q} : Objective (P → Q). +Global Instance impl_objective P Q `{!Objective P, !Objective Q} : + Objective (P → Q). Proof. intros i j. unseal. rewrite (bi.forall_elim i) bi.pure_impl_forall. rewrite bi.forall_elim //. apply bi.forall_intro=> k. @@ -663,9 +683,11 @@ Global Instance exists_objective {A} Φ {H : ∀ x : A, Objective (Φ x)} : @Objective I PROP (∃ x, Φ x)%I. Proof. intros i j. unseal. do 2 f_equiv. by apply objective_at. Qed. -Global Instance sep_objective P Q `{!Objective P, !Objective Q} : Objective (P ∗ Q). +Global Instance sep_objective P Q `{!Objective P, !Objective Q} : + Objective (P ∗ Q). Proof. intros i j. unseal. by rewrite !(objective_at _ i j). Qed. -Global Instance wand_objective P Q `{!Objective P, !Objective Q} : Objective (P -∗ Q). +Global Instance wand_objective P Q `{!Objective P, !Objective Q} : + Objective (P -∗ Q). Proof. intros i j. unseal. rewrite (bi.forall_elim i) bi.pure_impl_forall. rewrite bi.forall_elim //. apply bi.forall_intro=> k. @@ -681,13 +703,17 @@ Global Instance intuitionistically_objective P `{!Objective P} : Objective (□ Proof. rewrite /bi_intuitionistically. apply _. Qed. Global Instance absorbingly_objective P `{!Objective P} : Objective (<absorb> P). Proof. rewrite /bi_absorbingly. apply _. Qed. -Global Instance persistently_if_objective P p `{!Objective P} : Objective (<pers>?p P). +Global Instance persistently_if_objective P p `{!Objective P} : + Objective (<pers>?p P). Proof. rewrite /bi_persistently_if. destruct p; apply _. Qed. -Global Instance affinely_if_objective P p `{!Objective P} : Objective (<affine>?p P). +Global Instance affinely_if_objective P p `{!Objective P} : + Objective (<affine>?p P). Proof. rewrite /bi_affinely_if. destruct p; apply _. Qed. -Global Instance absorbingly_if_objective P p `{!Objective P} : Objective (<absorb>?p P). +Global Instance absorbingly_if_objective P p `{!Objective P} : + Objective (<absorb>?p P). Proof. rewrite /bi_absorbingly_if. destruct p; apply _. Qed. -Global Instance intuitionistically_if_objective P p `{!Objective P} : Objective (□?p P). +Global Instance intuitionistically_if_objective P p `{!Objective P} : + Objective (□?p P). Proof. rewrite /bi_intuitionistically_if. destruct p; apply _. Qed. (** monPred_in *) @@ -705,13 +731,19 @@ Qed. (** Big op *) Global Instance monPred_at_monoid_and_homomorphism i : MonoidHomomorphism bi_and bi_and (≡) (flip monPred_at i). -Proof. split; [split|]; try apply _; [apply monPred_at_and | apply monPred_at_pure]. Qed. +Proof. + split; [split|]; try apply _; [apply monPred_at_and | apply monPred_at_pure]. +Qed. Global Instance monPred_at_monoid_or_homomorphism i : MonoidHomomorphism bi_or bi_or (≡) (flip monPred_at i). -Proof. split; [split|]; try apply _; [apply monPred_at_or | apply monPred_at_pure]. Qed. +Proof. + split; [split|]; try apply _; [apply monPred_at_or | apply monPred_at_pure]. +Qed. Global Instance monPred_at_monoid_sep_homomorphism i : MonoidHomomorphism bi_sep bi_sep (≡) (flip monPred_at i). -Proof. split; [split|]; try apply _; [apply monPred_at_sep | apply monPred_at_emp]. Qed. +Proof. + split; [split|]; try apply _; [apply monPred_at_sep | apply monPred_at_emp]. +Qed. Lemma monPred_at_big_sepL {A} i (Φ : nat → A → monPred) l : ([∗ list] k↦x ∈ l, Φ k x) i ⊣⊢ [∗ list] k↦x ∈ l, Φ k x i. @@ -755,14 +787,17 @@ Lemma monPred_objectively_big_sepM_entails `{Countable K} {A} (Φ : K → A → monPred) (m : gmap K A) : ([∗ map] k↦x ∈ m, <obj> (Φ k x)) ⊢ <obj> ([∗ map] k↦x ∈ m, Φ k x). Proof. apply (big_opM_commute monPred_objectively (R:=flip (⊢))). Qed. -Lemma monPred_objectively_big_sepS_entails `{Countable A} (Φ : A → monPred) (X : gset A) : +Lemma monPred_objectively_big_sepS_entails `{Countable A} + (Φ : A → monPred) (X : gset A) : ([∗ set] y ∈ X, <obj> (Φ y)) ⊢ <obj> ([∗ set] y ∈ X, Φ y). Proof. apply (big_opS_commute monPred_objectively (R:=flip (⊢))). Qed. -Lemma monPred_objectively_big_sepMS_entails `{Countable A} (Φ : A → monPred) (X : gmultiset A) : +Lemma monPred_objectively_big_sepMS_entails `{Countable A} + (Φ : A → monPred) (X : gmultiset A) : ([∗ mset] y ∈ X, <obj> (Φ y)) ⊢ <obj> ([∗ mset] y ∈ X, Φ y). Proof. apply (big_opMS_commute monPred_objectively (R:=flip (⊢))). Qed. -Lemma monPred_objectively_big_sepL `{BiIndexBottom bot} {A} (Φ : nat → A → monPred) l : +Lemma monPred_objectively_big_sepL `{BiIndexBottom bot} {A} + (Φ : nat → A → monPred) l : <obj> ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, <obj> (Φ k x)). Proof. apply (big_opL_commute _). Qed. Lemma monPred_objectively_big_sepM `{BiIndexBottom bot} `{Countable K} {A} @@ -784,15 +819,21 @@ Proof. generalize dependent Φ. induction l=>/=; apply _. Qed. Global Instance big_sepM_objective `{Countable K} {A} (Φ : K → A → monPred) (m : gmap K A) `{∀ k x, Objective (Φ k x)} : Objective ([∗ map] k↦x ∈ m, Φ k x). -Proof. intros ??. rewrite !monPred_at_big_sepM. do 3 f_equiv. by apply objective_at. Qed. +Proof. + intros ??. rewrite !monPred_at_big_sepM. do 3 f_equiv. by apply objective_at. +Qed. Global Instance big_sepS_objective `{Countable A} (Φ : A → monPred) (X : gset A) `{∀ y, Objective (Φ y)} : Objective ([∗ set] y ∈ X, Φ y). -Proof. intros ??. rewrite !monPred_at_big_sepS. do 2 f_equiv. by apply objective_at. Qed. +Proof. + intros ??. rewrite !monPred_at_big_sepS. do 2 f_equiv. by apply objective_at. +Qed. Global Instance big_sepMS_objective `{Countable A} (Φ : A → monPred) (X : gmultiset A) `{∀ y, Objective (Φ y)} : Objective ([∗ mset] y ∈ X, Φ y). -Proof. intros ??. rewrite !monPred_at_big_sepMS. do 2 f_equiv. by apply objective_at. Qed. +Proof. + intros ??. rewrite !monPred_at_big_sepMS. do 2 f_equiv. by apply objective_at. +Qed. (** BUpd *) Local Program Definition monPred_bupd_def `{BiBUpd PROP} (P : monPred) : monPred := @@ -920,7 +961,8 @@ Local Program Definition monPred_fupd_def `{BiFUpd PROP} (E1 E2 : coPset) (P : monPred) : monPred := MonPred (λ i, |={E1,E2}=> P i)%I _. Next Obligation. solve_proper. Qed. -Local Definition monPred_fupd_aux : seal (@monPred_fupd_def). Proof. by eexists. Qed. +Local Definition monPred_fupd_aux : seal (@monPred_fupd_def). +Proof. by eexists. Qed. Definition monPred_fupd := monPred_fupd_aux.(unseal). Local Arguments monPred_fupd {_}. Local Lemma monPred_fupd_unseal `{BiFUpd PROP} : @@ -960,14 +1002,16 @@ Proof. intros ??. by rewrite !monPred_at_fupd objective_at. Qed. (** Plainly *) Local Definition monPred_plainly_def `{BiPlainly PROP} P : monPred := MonPred (λ _, ∀ i, ■(P i))%I _. -Local Definition monPred_plainly_aux : seal (@monPred_plainly_def). Proof. by eexists. Qed. +Local Definition monPred_plainly_aux : seal (@monPred_plainly_def). +Proof. by eexists. Qed. Definition monPred_plainly := monPred_plainly_aux.(unseal). Local Arguments monPred_plainly {_}. Local Lemma monPred_plainly_unseal `{BiPlainly PROP} : @plainly _ monPred_plainly = monPred_plainly_def. Proof. rewrite -monPred_plainly_aux.(seal_eq) //. Qed. -Lemma monPred_plainly_mixin `{BiPlainly PROP} : BiPlainlyMixin monPredI monPred_plainly. +Lemma monPred_plainly_mixin `{BiPlainly PROP} : + BiPlainlyMixin monPredI monPred_plainly. Proof. split; rewrite monPred_plainly_unseal; try unseal. - by (split=> ? /=; repeat f_equiv). @@ -1029,7 +1073,8 @@ Proof. - by rewrite (bi.forall_elim inhabitant). Qed. -Global Instance monPred_bi_bupd_plainly `{BiBUpdPlainly PROP} : BiBUpdPlainly monPredI. +Global Instance monPred_bi_bupd_plainly `{BiBUpdPlainly PROP} : + BiBUpdPlainly monPredI. Proof. intros P. split=> /= i. rewrite monPred_at_bupd monPred_plainly_unseal /= bi.forall_elim. @@ -1044,7 +1089,8 @@ Proof. by rewrite monPred_plainly_unseal. Qed. Global Instance monPred_at_plain `{BiPlainly PROP} P i : Plain P → Plain (P i). Proof. move => [] /(_ i). rewrite /Plain monPred_at_plainly bi.forall_elim //. Qed. -Global Instance monPred_bi_fupd_plainly `{BiFUpdPlainly PROP} : BiFUpdPlainly monPredI. +Global Instance monPred_bi_fupd_plainly `{BiFUpdPlainly PROP} : + BiFUpdPlainly monPredI. Proof. split; rewrite !monPred_fupd_unseal; try unseal. - intros E P. split=>/= i. @@ -1065,8 +1111,10 @@ Global Instance plainly_if_objective `{BiPlainly PROP} P p `{!Objective P} : Objective (■?p P). Proof. rewrite /plainly_if. destruct p; apply _. Qed. -Global Instance monPred_objectively_plain `{BiPlainly PROP} P : Plain P → Plain (<obj> P). +Global Instance monPred_objectively_plain `{BiPlainly PROP} P : + Plain P → Plain (<obj> P). Proof. rewrite monPred_objectively_unfold. apply _. Qed. -Global Instance monPred_subjectively_plain `{BiPlainly PROP} P : Plain P → Plain (<subj> P). +Global Instance monPred_subjectively_plain `{BiPlainly PROP} P : + Plain P → Plain (<subj> P). Proof. rewrite monPred_subjectively_unfold. apply _. Qed. End bi_facts. -- GitLab