diff --git a/algebra/sts.v b/algebra/sts.v index ca2056e5a1b856fe122fac0ecf85a6b735a0d1d7..67cc00894d657e751063bbc1706254b731054748 100644 --- a/algebra/sts.v +++ b/algebra/sts.v @@ -48,9 +48,15 @@ Inductive frame_step (T : set token) (s1 s2 : state) : Prop := Hint Resolve Frame_step. Record closed (S : set state) (T : set token) : Prop := Closed { closed_ne : S ≢ ∅; - closed_disjoint s : s ∈ S → tok s ∩ T ≡ ∅; + closed_disjoint s : s ∈ S → tok s ∩ T ⊆ ∅; closed_step s1 s2 : s1 ∈ S → frame_step T s1 s2 → s2 ∈ S }. +Lemma closed_disjoint' S T s : + closed S T → s ∈ S → tok s ∩ T ≡ ∅. +Proof. + move=>Hcl Hin. move:(closed_disjoint _ _ Hcl _ Hin). + solve_elem_of+. +Qed. Lemma closed_steps S T s1 s2 : closed S T → s1 ∈ S → rtc (frame_step T) s1 s2 → s2 ∈ S. Proof. induction 3; eauto using closed_step. Qed. @@ -144,13 +150,13 @@ Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed. Lemma up_up_set s T : up s T ≡ up_set {[ s ]} T. Proof. by rewrite /up_set collection_bind_singleton. Qed. Lemma closed_up_set S T : - (∀ s, s ∈ S → tok s ∩ T ≡ ∅) → S ≢ ∅ → closed (up_set S T) T. + (∀ s, s ∈ S → tok s ∩ T ⊆ ∅) → S ≢ ∅ → closed (up_set S T) T. Proof. intros HS Hne; unfold up_set; split. * assert (∀ s, s ∈ up s T) by eauto using elem_of_up. solve_elem_of. * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs'). specialize (HS s' Hs'); clear Hs' Hne S. - induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; auto. + induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done. inversion_clear Hstep; apply IH; clear IH; auto with sts. * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s. split; [eapply rtc_r|]; eauto. diff --git a/prelude/sets.v b/prelude/sets.v index ddd3a3cb22f5b7acdf7977150688882c046788e0..3236b3df0f34c47aa88d21d58aa4d3b9778c1ca0 100644 --- a/prelude/sets.v +++ b/prelude/sets.v @@ -18,9 +18,9 @@ Instance set_difference {A} : Difference (set A) := λ X1 X2, Instance set_collection : Collection A (set A). Proof. by split; [split | |]; repeat intro. Qed. -Lemma mkSet_elem_of {A} (f : A → Prop) x : f x → x ∈ mkSet f. +Lemma mkSet_elem_of {A} (f : A → Prop) x : (x ∈ mkSet f) = f x. Proof. done. Qed. -Lemma mkSet_not_elem_of {A} (f : A → Prop) x : ~f x → x ∉ mkSet f. +Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (~f x). Proof. done. Qed. Instance set_ret : MRet set := λ A (x : A), {[ x ]}. diff --git a/program_logic/sts.v b/program_logic/sts.v index 4501023b0154daceae037d7892f32523bcc4e865..7ec50a99c1c72a67931d422b10026ea491466258 100644 --- a/program_logic/sts.v +++ b/program_logic/sts.v @@ -97,7 +97,7 @@ Section sts. - intros Hdisj. split_ands; first by solve_elem_of+. + done. + constructor; [done | solve_elem_of-]. - - intros _. by eapply closed_disjoint. + - intros _. by eapply closed_disjoint'. - intros _. constructor. solve_elem_of+. Qed.