Commit 42fe994a authored by Ralf Jung's avatar Ralf Jung
Browse files

state a local retag lemma

parent 5d7ad1d1
......@@ -36,9 +36,18 @@ Proof.
sim_apply sim_simple_let_place=>/=.
(* Write *)
rewrite (vrel_eq _ _ _ FREL).
sim_apply sim_simple_write_local; first solve_res.
intros s ->. clear dependent vs. simpl.
sim_apply sim_simple_write_local. solve_res.
intros s ->. simpl.
sim_apply sim_simple_let_val=>/=.
apply sim_simple_place.
(* Retag. *)
sim_apply sim_simple_let_place=>/=.
destruct vs as [|s' vs]; first by inversion FREL.
apply Forall2_cons_inv in FREL as [FREL FTAIL].
destruct vs as [|]; last by inversion FTAIL. clear FTAIL.
sim_apply sim_simple_retag_local. solve_res. done. solve_res.
move=>l_i tg_i hplt /= Hl_i.
(* Call *)
sim_apply sim_simple_let_val=>/=.
Abort.
......@@ -296,8 +296,11 @@ Proof. intros Eq. rewrite lookup_core Eq /core /= core_id //. Qed.
(** Resources that we own. *)
Definition res_tag tg tk h : resUR :=
({[tg := (to_tagKindR tk, to_agree <$> h)]}, ε, ε).
Definition res_callState (c: call_id) (cs: call_state) : resUR :=
((ε, {[c := to_callStateR cs]}), ε).
(ε, {[c := to_callStateR cs]}, ε).
Definition res_mapsto l s stk : resUR :=
(ε, {[ l := to_locStateR (lsLocal s stk)]}).
(ε, ε, {[ l := to_locStateR (lsLocal s stk)]}).
......@@ -115,7 +115,6 @@ Proof.
intros HH σs σt <-<-. apply sim_body_alloc_local=>/=. eauto.
Qed.
(* FIXME notation is so broken, can one write this down without the Val? *)
Lemma sim_simple_write_local fs ft r r' n l tg Ts Tt v v' css cst Φ :
r r' res_mapsto l v' (init_stack (Tagged tg))
( s, v = [s] Φ (r' res_mapsto l s (init_stack (Tagged tg))) n (ValR [%S]) css (ValR [%S]) cst)
......@@ -125,6 +124,26 @@ Lemma sim_simple_write_local fs ft r r' n l tg Ts Tt v v' css cst Φ :
Proof.
Admitted.
Lemma sim_simple_retag_local fs ft r r' r'' rf n l s' s tg m ty css cst Φ :
r r' res_mapsto l s (init_stack (Tagged tg))
arel rf s' s
r' r'' rf
( l_inner tg_inner hplt,
let s := ScPtr l_inner (Tagged tg_inner) in
let tk := match m with Mutable => tkUnique | Immutable => tkPub end in
match m with
| Mutable => is_Some (hplt !! l_inner)
| Immutable => if is_freeze ty then is_Some (hplt !! l_inner) else True
end
Φ (r' res_mapsto l s (init_stack (Tagged tg)) res_tag tg_inner tk hplt) n (ValR [%S]) css (ValR [%S]) cst)
r ⊨ˢ{n,fs,ft}
(Retag (Place l (Tagged tg) (Reference (RefPtr m) ty)) Default, css)
(Retag (Place l (Tagged tg) (Reference (RefPtr m) ty)) Default, cst)
: Φ.
Proof.
Admitted.
(** * Pure *)
Lemma sim_simple_let_val fs ft r n x (vs1 vt1: value) es2 et2 css cst Φ :
r ⊨ˢ{n,fs,ft} (subst' x vs1 es2, css) (subst' x vt1 et2, cst) : Φ
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment