From 151d4e462a31067a770b870461d5dc49bb30cfe8 Mon Sep 17 00:00:00 2001 From: Hoang-Hai Dang <haidang@mpi-sws.org> Date: Wed, 9 Oct 2019 12:03:06 +0200 Subject: [PATCH] bump iris --- opam | 2 +- theories/lang/expr_semantics.v | 4 ++-- theories/lang/helpers.v | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/opam b/opam index 153c805..1869a25 100644 --- a/opam +++ b/opam @@ -7,7 +7,7 @@ synopsis: "The Coq artifact for 'Stacked Borrows'" build: [make "-j%{jobs}%"] install: [make "install"] depends: [ - "coq-iris" { (= "dev.2019-08-29.2.b75bb397") | (= "dev") } + "coq-iris" { (= "dev.2019-09-19.3.aa7871c7") | (= "dev") } "coq-paco" { (= "3.0.0") } "coq-equations" { (= "1.2~beta+8.8") | (= "1.2~beta+8.9") } ] diff --git a/theories/lang/expr_semantics.v b/theories/lang/expr_semantics.v index 88f8344..8053391 100644 --- a/theories/lang/expr_semantics.v +++ b/theories/lang/expr_semantics.v @@ -249,13 +249,13 @@ Equations read_mem (l: loc) (n: nat) h: option value := Definition fresh_block (h : mem) : block := let loclst : list loc := elements (dom (gset loc) h) in - let blockset : gset block := foldr (λ l, ({[l.1]} ∪)) ∅ loclst in + let blockset : gset block := foldr (λ l, ({[l.1]} ∪.)) ∅ loclst in fresh blockset. Lemma is_fresh_block h i : (fresh_block h,i) ∉ dom (gset loc) h. Proof. assert (∀ l (ls: list loc) (X : gset block), - l ∈ ls → l.1 ∈ foldr (λ l, ({[l.1]} ∪)) X ls) as help. + l ∈ ls → l.1 ∈ foldr (λ l, ({[l.1]} ∪.)) X ls) as help. { induction 1; set_solver. } rewrite /fresh_block /shift /= -elem_of_elements. move=> /(help _ _ ∅) /=. apply is_fresh. diff --git a/theories/lang/helpers.v b/theories/lang/helpers.v index d1d596f..59f108b 100644 --- a/theories/lang/helpers.v +++ b/theories/lang/helpers.v @@ -102,11 +102,11 @@ Instance nat_sqsubseteq : SqSubsetEq nat := le. Instance nat_sqsubseteq_po : @PartialOrder nat (⊑) := _. Instance elem_of_list_suffix_proper {A : Type} (x:A) : - Proper ((suffix) ==> impl) (x ∈). + Proper ((suffix) ==> impl) (x ∈.). Proof. intros l1 l2 [? ->] ?. rewrite elem_of_app. by right. Qed. Instance elem_of_list_sublist_proper {A : Type} (x:A) : - Proper ((sublist) ==> impl) (x ∈). + Proper ((sublist) ==> impl) (x ∈.). Proof. intros l1 l2 SUB. induction SUB; [done|..]. - rewrite 2!elem_of_cons. intros []; [by left|right; auto]. -- GitLab