simple.v 9.85 KB
Newer Older
1
2
(** A simpler simulation relation that hides most of the physical state,
except for the call ID stack.
3
4
5
Useful whenever the resources we own are strong enough to carry us from step to step.

When your goal is simple, to make it stateful just do [intros σs σt].
6
To go the other direction, [apply sim_simplify NEW_POST]. Then you will likely
7
8
9
want to clean some stuff from your context.
*)

Ralf Jung's avatar
Ralf Jung committed
10
11
From stbor.sim Require Export body instance.
From stbor.sim Require Import refl_step.
12

Hai Dang's avatar
Hai Dang committed
13
14
15
Definition fun_post_simple
  initial_call_id_stack (r: resUR) (n: nat) vs (css: call_id_stack) vt cst :=
  ( c, cst = c::initial_call_id_stack  end_call_sat r c) 
16
  rrel vrel r vs vt.
17
18
19
20
21
22
23

Definition sim_simple fs ft r n es css et cst
  (Φ : resUR  nat  result  call_id_stack  result  call_id_stack  Prop) : Prop :=
   σs σt, σs.(scs) = css  σt.(scs) = cst 
    r { n , fs , ft } ( es , σs )  ( et , σt ) :
    (λ r n vs' σs' vt' σt', Φ r n vs' σs'.(scs) vt' σt'.(scs)).

Ralf Jung's avatar
Ralf Jung committed
24
Notation "r ⊨ˢ{ n , fs , ft } ( es , css ) ≥ ( et , cst ) : Φ" :=
25
  (sim_simple fs ft r n%nat es%E css et%E cst Φ)
26
  (at level 70, es, et at next level,
27
28
   format "'[hv' r  '/' ⊨ˢ{ n , fs , ft }  '/  ' '[ ' ( es ,  css ) ']'  '/' ≥  '/  ' '[ ' ( et ,  cst ) ']'  '/' :  Φ ']'").

Ralf Jung's avatar
Ralf Jung committed
29
30
31
Section simple.
Implicit Types Φ: resUR  nat  result  call_id_stack  result  call_id_stack  Prop.

32
33
34
35
36
37
38
39
40
(* FIXME: does this [apply]? *)
Lemma sim_simplify
  (Φnew: resUR  nat  result  call_id_stack  result  call_id_stack  Prop)
  (Φ: resUR  nat  result  state  result  state  Prop)
  r n fs ft es σs et σt :
  ( r n vs σs vt σt, Φnew r n vs σs.(scs) vt σt.(scs)  Φ r n vs σs vt σt) 
  r ⊨ˢ{ n , fs , ft } (es, σs.(scs))  (et, σt.(scs)) : Φnew 
  r { n , fs , ft } (es, σs)  (et, σt) : Φ.
Proof.
Ralf Jung's avatar
Ralf Jung committed
41
  intros HΦ HH. eapply sim_local_body_post_mono; last exact: HH.
42
43
  apply HΦ.
Qed.
44
45
46
47
48
49
50
51
52
53
54
55
Lemma sim_simplify'
  (Φnew: resUR  nat  result  call_id_stack  result  call_id_stack  Prop)
  (Φ: resUR  nat  result  state  result  state  Prop)
  r n fs ft es σs et σt css cst :
  ( r n vs σs vt σt, Φnew r n vs σs.(scs) vt σt.(scs)  Φ r n vs σs vt σt) 
  σs.(scs) = css 
  σt.(scs) = cst 
  r ⊨ˢ{ n , fs , ft } (es, css)  (et, cst) : Φnew 
  r { n , fs , ft } (es, σs)  (et, σt) : Φ.
Proof.
  intros HΦ <-<-. eapply sim_simplify. done.
Qed.
56

Ralf Jung's avatar
Ralf Jung committed
57
58
59
60
61
62
63
64
65
66
Lemma sim_simple_post_mono Φ1 Φ2 r n fs ft es css et cst :
  Φ1 <6= Φ2 
  r ⊨ˢ{ n , fs , ft } (es, css)  (et, cst) : Φ1 
  r ⊨ˢ{ n , fs , ft } (es, css)  (et, cst) : Φ2.
Proof.
  intros HΦ Hold σs σt <-<-.
  eapply sim_local_body_post_mono; last exact: Hold.
  auto.
Qed.

67
68
(** Simple proof for a function taking one argument. *)
(* TODO: make the two call stacks the same. *)
Ralf Jung's avatar
Ralf Jung committed
69
Lemma sim_fun_simple1 n (esf etf: function) :
Ralf Jung's avatar
Ralf Jung committed
70
71
  length (esf.(fun_args)) = 1%nat 
  length (etf.(fun_args)) = 1%nat 
Ralf Jung's avatar
Ralf Jung committed
72
73
  ( fs ft rf es css et cst vs vt,
    sim_local_funs_lookup fs ft 
74
    vrel rf vs vt 
Ralf Jung's avatar
Ralf Jung committed
75
76
    subst_l (esf.(fun_args)) [Val vs] (esf.(fun_body)) = Some es 
    subst_l (etf.(fun_args)) [Val vt] (etf.(fun_body)) = Some et 
77
    rf ⊨ˢ{n,fs,ft} (InitCall es, css)  (InitCall et, cst) : fun_post_simple cst) 
Ralf Jung's avatar
Ralf Jung committed
78
  ⊨ᶠ esf  etf.
79
Proof.
Ralf Jung's avatar
Ralf Jung committed
80
  intros Hls Hlt HH fs ft Hlook rf es et vls vlt σs σt FREL SUBSTs SUBSTt. exists n.
81
82
83
84
  move:(subst_l_is_Some_length _ _ _ _ SUBSTs) (subst_l_is_Some_length _ _ _ _ SUBSTt).
  rewrite Hls Hlt.
  destruct vls as [|vs []]; [done| |done].
  destruct vlt as [|vt []]; [done| |done].
85
  inversion FREL as [|???? RREL]. intros _ _. simplify_eq.
86
87
  eapply sim_simplify; last by eapply HH. done.
Qed.
88

Ralf Jung's avatar
Ralf Jung committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
Lemma sim_simple_bind fs ft
  (Ks: list (ectxi_language.ectx_item (bor_ectxi_lang fs)))
  (Kt: list (ectxi_language.ectx_item (bor_ectxi_lang ft)))
  es et r n css cst Φ :
  r ⊨ˢ{n,fs,ft} (es, css)  (et, cst)
    : (λ r' n' es' css' et' cst',
        r' ⊨ˢ{n',fs,ft} (fill Ks es', css')  (fill Kt et', cst') : Φ) 
  r ⊨ˢ{n,fs,ft} (fill Ks es, css)  (fill Kt et, cst) : Φ.
Proof.
  intros HH σs σt <-<-. apply sim_body_bind.
  eapply sim_local_body_post_mono; last exact: HH.
  clear. simpl. intros r n vs σs vt σt HH. exact: HH.
Qed.

103
104
Lemma sim_simple_val fs ft r n (vs vt: value) css cst Φ :
  Φ r n vs css vt cst 
Hai Dang's avatar
Hai Dang committed
105
  r ⊨ˢ{n,fs,ft} (vs, css)  (vt, cst) : Φ.
106
107
108
109
110
111
Proof.
  intros HH σs σt <-<-. eapply (sim_body_result _ _ _ _ vs vt). done.
Qed.

Lemma sim_simple_place fs ft r n ls lt ts tt tys tyt css cst Φ :
  Φ r n (PlaceR ls ts tys) css (PlaceR lt tt tyt) cst 
Hai Dang's avatar
Hai Dang committed
112
  r ⊨ˢ{n,fs,ft} (Place ls ts tys, css)  (Place lt tt tyt, cst) : Φ.
113
114
115
116
Proof.
  intros HH σs σt <-<-. eapply (sim_body_result _ _ _ _ (PlaceR _ _ _) (PlaceR _ _ _)). done.
Qed.

Ralf Jung's avatar
Ralf Jung committed
117
(** * Administrative *)
118
119
120
121
122
123
124
125
126
127
Lemma sim_simple_init_call fs ft r n es css et cst Φ :
  ( c: call_id,
    let r' := res_callState c (csOwned ) in
    r  r' ⊨ˢ{n,fs,ft} (es, c::cst)  (et, c::cst) : Φ) 
  r ⊨ˢ{n,fs,ft} (InitCall es, css)  (InitCall et, cst) : Φ.
Proof.
  intros HH σs σt <-<-. apply sim_body_init_call=>/= ?.
  apply HH; done.
Qed.

Ralf Jung's avatar
Ralf Jung committed
128
129
130
(* [Val <$> _] in the goal makes this not work with [apply], but
we'd need tactic support for anything better. *)
Lemma sim_simple_call n' vls vlt rv fs ft r r' n fid css cst Φ :
131
  sim_local_funs_lookup fs ft 
Ralf Jung's avatar
Ralf Jung committed
132
133
  Forall2 (vrel rv) vls vlt 
  r  r'  rv 
134
  ( rret vs vt, rrel vrel rret vs vt 
135
    r'  rret ⊨ˢ{n',fs,ft} (of_result vs, css)  (of_result vt, cst) : Φ) 
Ralf Jung's avatar
Ralf Jung committed
136
137
138
  r ⊨ˢ{n,fs,ft}
    (Call #[ScFnPtr fid] (Val <$> vls), css)  (Call #[ScFnPtr fid] (Val <$> vlt), cst) : Φ.
Proof.
Hai Dang's avatar
Hai Dang committed
139
  intros Hfns Hrel Hres HH σs σt <-<-.
Ralf Jung's avatar
Ralf Jung committed
140
141
142
  eapply sim_body_res_proper; last apply: sim_body_step_over_call.
  - symmetry. exact: Hres.
  - done.
Hai Dang's avatar
Hai Dang committed
143
  - done.
Ralf Jung's avatar
Ralf Jung committed
144
  - intros. exists n'. eapply sim_body_res_proper; last apply: HH; try done.
Hai Dang's avatar
Hai Dang committed
145
Qed.
Ralf Jung's avatar
Ralf Jung committed
146

Ralf Jung's avatar
Ralf Jung committed
147
(** * Memory *)
148
Lemma sim_simple_alloc_local fs ft r n T css cst Φ :
149
  ( (l: loc) (tg: nat),
Ralf Jung's avatar
Ralf Jung committed
150
    let r' := res_mapsto l (tsize T)  (init_stack (Tagged tg)) in
151
    Φ (r  r') n (PlaceR l (Tagged tg) T) css (PlaceR l (Tagged tg) T) cst) 
152
153
  r ⊨ˢ{n,fs,ft} (Alloc T, css)  (Alloc T, cst) : Φ.
Proof.
Ralf Jung's avatar
Ralf Jung committed
154
  intros HH σs σt <-<-. apply sim_body_alloc_local=>/=. exact: HH.
155
156
Qed.

Ralf Jung's avatar
Ralf Jung committed
157
158
Lemma sim_simple_write_local fs ft r r' n l tg ty v v' css cst Φ :
  tsize ty = 1%nat 
Ralf Jung's avatar
Ralf Jung committed
159
160
  r  r'  res_mapsto l 1 v' (init_stack (Tagged tg)) 
  ( s, v = [s]  Φ (r'  res_mapsto l 1 s (init_stack (Tagged tg))) n (ValR [%S]) css (ValR [%S]) cst) 
161
  r ⊨ˢ{n,fs,ft}
Ralf Jung's avatar
Ralf Jung committed
162
    (Place l (Tagged tg) ty <- #v, css)  (Place l (Tagged tg) ty <- #v, cst)
163
  : Φ.
Hai Dang's avatar
Hai Dang committed
164
Proof. intros Hty Hres HH σs σt <-<-. eapply sim_body_write_local_1; eauto. Qed.
165

Ralf Jung's avatar
Ralf Jung committed
166
Lemma sim_simple_retag_local fs ft r r' r'' rs n l s' s tg m ty css cst Φ :
Ralf Jung's avatar
Ralf Jung committed
167
  r  r'  res_mapsto l 1 s (init_stack (Tagged tg)) 
Ralf Jung's avatar
Ralf Jung committed
168
169
  arel rs s' s 
  r'  r''  rs 
Ralf Jung's avatar
Ralf Jung committed
170
  ( l_inner tg_inner hplt,
Ralf Jung's avatar
Ralf Jung committed
171
    let s_new := ScPtr l_inner (Tagged tg_inner) in
Ralf Jung's avatar
Ralf Jung committed
172
173
174
175
176
    let tk := match m with Mutable => tkUnique | Immutable => tkPub end in
    match m with 
    | Mutable => is_Some (hplt !! l_inner)
    | Immutable => if is_freeze ty then is_Some (hplt !! l_inner) else True
    end 
Ralf Jung's avatar
Ralf Jung committed
177
    Φ (r''  rs  res_mapsto l 1 s_new (init_stack (Tagged tg))  res_tag tg_inner tk hplt) n (ValR [%S]) css (ValR [%S]) cst) 
Ralf Jung's avatar
Ralf Jung committed
178
179
180
181
182
183
184
185
  r ⊨ˢ{n,fs,ft}
    (Retag (Place l (Tagged tg) (Reference (RefPtr m) ty)) Default, css)
  
    (Retag (Place l (Tagged tg) (Reference (RefPtr m) ty)) Default, cst)
  : Φ.
Proof.
Admitted.

Ralf Jung's avatar
Ralf Jung committed
186
(** * Pure *)
Ralf Jung's avatar
Ralf Jung committed
187
188
189
190
191
192
Lemma sim_simple_let fs ft r n x (vs1 vt1: expr) es2 et2 css cst Φ :
  terminal vs1  terminal vt1 
  r ⊨ˢ{n,fs,ft} (subst' x vs1 es2, css)  (subst' x vt1 et2, cst) : Φ 
  r ⊨ˢ{n,fs,ft} (let: x := vs1 in es2, css)  ((let: x := vt1 in et2), cst) : Φ.
Proof. intros ?? HH σs σt <-<-. apply sim_body_let; eauto. Qed.

Ralf Jung's avatar
Ralf Jung committed
193
Lemma sim_simple_let_val fs ft r n x (vs1 vt1: value) es2 et2 css cst Φ :
194
  r ⊨ˢ{n,fs,ft} (subst' x vs1 es2, css)  (subst' x vt1 et2, cst) : Φ 
Ralf Jung's avatar
Ralf Jung committed
195
196
197
198
  r ⊨ˢ{n,fs,ft} (let: x := vs1 in es2, css)  ((let: x := vt1 in et2), cst) : Φ.
Proof. intros HH σs σt <-<-. apply sim_body_let; eauto. Qed.

Lemma sim_simple_let_place fs ft r n x ls lt ts tt tys tyt es2 et2 css cst Φ :
199
  r ⊨ˢ{n,fs,ft} (subst' x (Place ls ts tys) es2, css)  (subst' x (Place lt tt tyt) et2, cst) : Φ 
Ralf Jung's avatar
Ralf Jung committed
200
201
202
  r ⊨ˢ{n,fs,ft} (let: x := Place ls ts tys in es2, css)  ((let: x := Place lt tt tyt in et2), cst) : Φ.
Proof. intros HH σs σt <-<-. apply sim_body_let; eauto. Qed.

Ralf Jung's avatar
Ralf Jung committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
Lemma sim_simple_ref fs ft r n l tgs tgt Ts Tt css cst Φ :
  Φ r n (ValR [ScPtr l tgs]) css (ValR [ScPtr l tgt]) cst 
  r ⊨ˢ{n,fs,ft} ((& (Place l tgs Ts))%E, css)  ((& (Place l tgt Tt))%E, cst) : Φ.
Proof. intros HH σs σt <-<-. apply sim_body_ref; eauto. Qed.

Lemma sim_simple_deref fs ft r n l tgs tgt Ts Tt css cst Φ :
  tsize Ts = tsize Tt 
  Φ r n (PlaceR l tgs Ts) css (PlaceR l tgt Tt) cst 
  r ⊨ˢ{n,fs,ft} (Deref #[ScPtr l tgs] Ts, css)  (Deref #[ScPtr l tgt] Tt, cst) : Φ.
Proof. intros ? HH σs σt <-<-. apply sim_body_deref; eauto. Qed.

Lemma sim_simple_var fs ft r n css cst var Φ :
  r ⊨ˢ{n,fs,ft} (Var var, css)  (Var var, cst) : Φ.
Proof. intros σs σt <-<-. apply sim_body_var; eauto. Qed.

Lemma sim_simple_proj fs ft r n (v i: result) css cst Φ :
  ( vi vv iv, v = ValR vv  i = ValR [ScInt iv] 
    vv !! (Z.to_nat iv) = Some vi  0  iv 
    Φ r n (ValR [vi]) css (ValR [vi]) cst) 
  r ⊨ˢ{n,fs,ft} (Proj v i, css)  (Proj v i, cst) : Φ.
Proof. intros HH σs σt <-<-. apply sim_body_proj; eauto. Qed.

Lemma sim_simple_conc fs ft r n (r1 r2: result) css cst Φ :
  ( v1 v2, r1 = ValR v1  r2 = ValR v2 
    Φ r n (ValR (v1 ++ v2)) css (ValR (v1 ++ v2)) cst) 
  r ⊨ˢ{n,fs,ft} (Conc r1 r2, css)  (Conc r1 r2, cst) : Φ.
Proof. intros HH σs σt <-<-. apply sim_body_conc; eauto. Qed.

231
End simple.