steps_retag.v 26.2 KB
Newer Older
Hai Dang's avatar
Hai Dang committed
1 2 3 4
From stbor.lang Require Export defs steps_foreach steps_list.

Set Default Proof Using "Type".

Hai Dang's avatar
Hai Dang committed
5 6 7 8
Definition tag_in t (stk: stack) :=
   pm opro, pm  Disabled  mkItem pm (Tagged t) opro  stk.
Definition tag_in_stack σ l t :=
   stk, σ.(sst) !! l = Some stk  tag_in t stk.
Ralf Jung's avatar
Ralf Jung committed
9 10
Definition tag_on_top σt l tag : Prop :=
  tg <$> (σt.(sst) !! l) = head = Some (Tagged tag).
Hai Dang's avatar
Hai Dang committed
11

Hai Dang's avatar
Hai Dang committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
(** Active protector preserving *)
Definition active_preserving (cids: call_id_stack) (stk stk': stack) :=
   pm t c, c  cids  mkItem pm t (Some c)  stk  mkItem pm t (Some c)  stk'.

Instance active_preserving_preorder cids : PreOrder (active_preserving cids).
Proof.
  constructor.
  - intros ??. done.
  - intros ??? AS1 AS2 ?????. naive_solver.
Qed.

Lemma active_preserving_app_mono (cids: call_id_stack) (stk1 stk2 stk': stack) :
  active_preserving cids stk1 stk2 
  active_preserving cids (stk1 ++ stk') (stk2 ++ stk').
Proof.
  intros AS pm t c Inc. rewrite 2!elem_of_app.
  specialize (AS pm t c Inc). set_solver.
Qed.

Lemma remove_check_active_preserving cids stk stk' idx:
  remove_check cids stk idx = Some stk'  active_preserving cids stk stk'.
Proof.
  revert idx.
  induction stk as [|it stk IH]; intros idx; simpl.
  { destruct idx; [|done]. intros ??. by simplify_eq. }
  destruct idx as [|idx]; [intros ??; by simplify_eq|].
  case check_protector eqn:Eq; [|done].
  move => /IH AS pm t c IN /elem_of_cons [?|]; [|by apply AS].
  subst it. exfalso. move : Eq.
  by rewrite /check_protector /= /is_active bool_decide_true //.
Qed.

Lemma replace_check'_active_preserving cids acc stk stk':
  replace_check' cids acc stk = Some stk'  active_preserving cids stk stk'.
Proof.
  revert acc.
  induction stk as [|it stk IH]; intros acc; simpl.
  { intros. simplify_eq. by intros ?????%not_elem_of_nil. }
  case decide => ?; [case check_protector eqn:Eq; [|done]|].
  - move => /IH AS pm t c IN /elem_of_cons [?|]; [|by apply AS].
    subst it. exfalso. move : Eq.
    by rewrite /check_protector /= /is_active bool_decide_true //.
  - move => Eq pm t c IN /elem_of_cons [?|].
    + apply (replace_check'_acc_result _ _ _ _ Eq), elem_of_app. right.
      by apply elem_of_list_singleton.
    + by apply (IH _ Eq).
Qed.

Lemma replace_check_active_preserving cids stk stk':
  replace_check cids stk = Some stk'  active_preserving cids stk stk'.
Proof. by apply replace_check'_active_preserving. Qed.

Lemma access1_active_preserving stk stk' kind tg cids n:
  access1 stk kind tg cids = Some (n, stk') 
  active_preserving cids stk stk'.
Proof.
  rewrite /access1. case find_granting as [gip|]; [|done]. simpl.
  destruct kind.
  - case replace_check as [stk1|] eqn:Eq; [|done].
    simpl. intros. simplify_eq.
    rewrite -{1}(take_drop gip.1 stk).
    by apply active_preserving_app_mono, replace_check_active_preserving.
  - case find_first_write_incompatible as [idx|]; [|done]. simpl.
    case remove_check as [stk1|] eqn:Eq; [|done].
    simpl. intros. simplify_eq.
    rewrite -{1}(take_drop gip.1 stk).
    by eapply active_preserving_app_mono, remove_check_active_preserving.
Qed.

Lemma for_each_access1_active_preserving α cids l n tg kind α':
  for_each α l n false
          (λ stk, nstk'  access1 stk kind tg cids; Some nstk'.2) = Some α' 
   l stk, α !! l = Some stk 
   stk', α' !! l = Some stk'  active_preserving cids stk stk'.
Proof.
  intros EQ. destruct (for_each_lookup  _ _ _ _ _ EQ) as [EQ1 [EQ2 EQ3]].
  intros l1 stk1 Eq1.
  case (decide (l1.1 = l.1)) => [Eql|NEql];
    [case (decide (l.2  l1.2 < l.2 + n)) => [[Le Lt]|NIN]|].
  - have Eql2: l1 = l + Z.of_nat (Z.to_nat (l1.2 - l.2)). {
      destruct l, l1. move : Eql Le => /= -> ?.
      rewrite /shift_loc /= Z2Nat.id; [|lia]. f_equal. lia. }
    destruct (EQ1 (Z.to_nat (l1.2 - l.2)) stk1)
      as [stk [Eq [[n1 stk'] [Eq' Eq0]]%bind_Some]];
      [rewrite -(Nat2Z.id n) -Z2Nat.inj_lt; lia|by rewrite -Eql2|].
    exists stk. rewrite -Eql2 in Eq. split; [done|]. simpl in Eq0. simplify_eq.
    eapply access1_active_preserving; eauto.
  - rewrite EQ3; [naive_solver|].
    intros i Lt Eq. apply NIN. rewrite Eq /=. lia.
  - rewrite EQ3; [naive_solver|].
    intros i Lt Eq. apply NEql. by rewrite Eq.
Qed.


(** Head preserving *)
Definition is_stack_head (it: item) (stk: stack) :=
   stk', stk = it :: stk'.

Lemma sublist_head_preserving t it it' stk stk' :
  stk' `sublist_of` stk 
  it'.(tg) = Tagged t  it.(tg) = Tagged t 
  it'  stk' 
  stack_item_tagged_NoDup stk 
  is_stack_head it stk 
  is_stack_head it stk'.
Proof.
  intros SUB Eqt' Eqt In' ND.
  induction SUB as [|???? IH|???? IH]; [done|..]; intros [stk1 ?]; simplify_eq;
    [by eexists|].
  exfalso. move : ND.
  rewrite /stack_item_tagged_NoDup filter_cons decide_True;
    last by rewrite /is_tagged Eqt.
  rewrite fmap_cons NoDup_cons. intros [NI ?].
  apply NI, elem_of_list_fmap. exists it'. split; [rewrite Eqt' Eqt //|].
  apply elem_of_list_filter. split. by rewrite /is_tagged Eqt'. by rewrite <-SUB.
Qed.

Lemma replace_check'_head_preserving stk stk' acc stk0 cids pm pm' t opro:
  stack_item_tagged_NoDup (acc ++ stk ++ stk0) 
  pm  Disabled 
  mkItem pm (Tagged t) opro  (stk' ++ stk0) 
  replace_check' cids acc stk = Some stk' 
  is_stack_head (mkItem pm' (Tagged t) opro) (acc ++ stk ++ stk0) 
  is_stack_head (mkItem pm' (Tagged t) opro) (stk' ++ stk0).
Proof.
  intros ND NDIS IN. revert acc ND.
  induction stk as [|it stk IH]; simpl; intros acc ND.
  { intros ?. by simplify_eq. }
  case decide => ?; [case check_protector; [|done]|];
    [|move => /IH; rewrite -(app_assoc acc [it] (stk ++ stk0)); naive_solver].
  move => RC.
  rewrite (app_assoc acc [it] (stk ++ stk0)).
  have ND3: stack_item_tagged_NoDup
    ((acc ++ [mkItem Disabled it.(tg) it.(protector)]) ++ stk ++ stk0).
  { move : ND. clear.
    rewrite (app_assoc acc [it]) 2!(Permutation_app_comm acc) -2!app_assoc.
    rewrite /stack_item_tagged_NoDup 2!filter_cons /=.
    case decide => ?; [rewrite decide_True //|rewrite decide_False //]. }
  intros HD. apply (IH _ ND3 RC). clear IH. move : HD.
  destruct acc as [|it1 acc]; last first.
  { simpl in *. move => [? Eq]. inversion Eq. simplify_eq. by eexists. }
  simpl. intros [stk2 Eq]. exfalso. simplify_eq; simpl in *.
  have IN1:= (replace_check'_acc_result _ _ _ _ RC).
  have IN': mkItem Disabled (Tagged t) opro  stk' ++ stk0 by set_solver. clear IN1.
  have ND4 := replace_check'_stack_item_tagged_NoDup_2 _ _ _ _ _ RC ND3.
  have EQ := stack_item_tagged_NoDup_eq _ _ _ _ ND4 IN IN' eq_refl eq_refl.
  by inversion EQ.
Qed.

Lemma replace_check_head_preserving stk stk' stk0 cids pm pm' t opro:
  stack_item_tagged_NoDup (stk ++ stk0) 
  pm  Disabled 
  mkItem pm (Tagged t) opro  (stk' ++ stk0) 
  replace_check cids stk = Some stk' 
  is_stack_head (mkItem pm' (Tagged t) opro) (stk ++ stk0) 
  is_stack_head (mkItem pm' (Tagged t) opro) (stk' ++ stk0).
Proof. intros. eapply replace_check'_head_preserving; eauto. done. Qed.

Lemma access1_head_preserving stk stk' kind tg cids n pm pm' t opro:
  stack_item_tagged_NoDup stk 
  pm  Disabled 
  mkItem pm (Tagged t) opro  stk' 
  access1 stk kind tg cids = Some (n, stk') 
  is_stack_head (mkItem pm' (Tagged t) opro) stk 
  is_stack_head (mkItem pm' (Tagged t) opro) stk'.
Proof.
  intros ND NDIS IN.
  rewrite /access1. case find_granting as [gip|]; [|done]. simpl.
  destruct kind.
  - case replace_check as [stk1|] eqn:Eq; [|done].
    simpl. intros ?. simplify_eq.
    rewrite -{1}(take_drop gip.1 stk). intros HD.
    rewrite -{1}(take_drop gip.1 stk) in ND.
    eapply replace_check_head_preserving; eauto.
  - case find_first_write_incompatible as [idx|]; [|done]. simpl.
    case remove_check as [stk1|] eqn:Eq; [|done].
    simpl. intros ?. simplify_eq.
    have SUB: stk1 ++ drop gip.1 stk `sublist_of` stk.
    { rewrite -{2}(take_drop gip.1 stk). apply sublist_app; [|done].
      move : Eq. apply remove_check_sublist. }
    eapply sublist_head_preserving; eauto. done.
Qed.


(** active_SRO preserving *)
Lemma active_SRO_cons_elem_of t it stk :
  t  active_SRO (it :: stk) 
  it.(perm) = SharedReadOnly  (it.(tg) = Tagged t  t  active_SRO stk).
Proof.
  simpl. destruct it.(perm); [set_solver..| |set_solver].
  case tg => [?|]; [rewrite elem_of_union elem_of_singleton|]; naive_solver.
Qed.

Lemma sublist_active_SRO_preserving t it stk stk' :
  stk' `sublist_of` stk 
  it.(tg) = Tagged t 
  it  stk' 
  stack_item_tagged_NoDup stk 
  t  active_SRO stk  t  active_SRO stk'.
Proof.
  intros SUB Eqt In' ND.
  induction SUB as [|it1 stk1 stk2 ? IH|it1 stk1 stk2 ? IH]; [done|..].
  - intros [? Eq]%active_SRO_cons_elem_of. apply active_SRO_cons_elem_of.
    split; [done|]. destruct Eq as [?|Eq]; [by left|].
    apply elem_of_cons in In' as [?|In'].
    + subst it. rewrite Eqt. by left.
    + right. apply IH; auto. by eapply stack_item_tagged_NoDup_cons_1.
  - intros [? Eq]%active_SRO_cons_elem_of.
    destruct Eq as [Eq|In2].
    + exfalso. move : ND.
      rewrite /stack_item_tagged_NoDup filter_cons decide_True;
        last by rewrite /is_tagged Eq.
      rewrite fmap_cons NoDup_cons. intros [NI ?].
      apply NI, elem_of_list_fmap. exists it. split; [rewrite Eqt Eq //|].
      apply elem_of_list_filter. split. by rewrite /is_tagged Eqt. by rewrite <-SUB.
    + apply IH; auto. by eapply stack_item_tagged_NoDup_cons_1.
Qed.

Lemma active_SRO_tag_eq_elem_of stk1 stk2 t :
  fmap tg stk1 = fmap tg stk2 
  Forall2 (λ pm1 pm2, pm1 = SharedReadOnly  pm2 = SharedReadOnly)
          (fmap perm stk1) (fmap perm stk2) 
  t  active_SRO stk1  t  active_SRO stk2.
Proof.
  revert stk2.
  induction stk1 as [|it stk1 IH]; intros stk2; [simpl; set_solver|].
  destruct stk2 as [|it2 stk2]; [naive_solver|].
  rewrite 4!fmap_cons. inversion 1 as [Eqt].
  inversion 1 as [|???? Eq1 FA]; subst. rewrite 2!active_SRO_cons_elem_of.
  intros [EqSRO Eq]. specialize (Eq1 EqSRO). split; [done|].
  destruct Eq as [Eq|In1].
  - rewrite -Eqt. by left.
  - right. by apply IH.
Qed.

Lemma replace_check'_active_SRO_preserving cids acc stk stk' stk0 t it:
  it.(tg) = Tagged t 
  it  stk' ++ stk0 
  replace_check' cids acc stk = Some stk' 
  stack_item_tagged_NoDup (acc ++ stk ++ stk0) 
  t  active_SRO (acc ++ stk ++ stk0)  t  active_SRO (stk' ++ stk0).
Proof.
  intros Eqt IN. revert acc.
  induction stk as [|it1 stk IH]; simpl; intros acc.
  { intros ?. by simplify_eq. }
  case decide => [EqU|?]; [case check_protector; [|done]|];
    [|move => /IH; rewrite -(app_assoc acc [it1] (stk ++ stk0)); naive_solver].
  move => RC ND.
  rewrite (app_assoc acc [it1] (stk ++ stk0)).
  have ND3: stack_item_tagged_NoDup
    ((acc ++ [mkItem Disabled it1.(tg) it1.(protector)]) ++ stk ++ stk0).
  { move : ND. clear.
    rewrite (app_assoc acc [it1]) 2!(Permutation_app_comm acc) -2!app_assoc.
    rewrite /stack_item_tagged_NoDup 2!filter_cons /=.
    case decide => ?; [rewrite decide_True //|rewrite decide_False //]. }
  intros HD. apply (IH _ RC ND3). clear IH. move : HD.
  apply active_SRO_tag_eq_elem_of.
  - by rewrite !fmap_app /=.
  - rewrite 2!(fmap_app _ _ (stk ++ stk0)).
    apply Forall2_app; [rewrite 2!fmap_app; apply Forall2_app|].
    + by apply Forall_Forall2, Forall_forall.
    + apply Forall2_cons; [|constructor]. by rewrite EqU.
    + by apply Forall_Forall2, Forall_forall.
Qed.

Lemma replace_check_active_SRO_preserving cids stk stk' stk0 it t:
  it.(tg) = Tagged t 
  it  stk' ++ stk0 
  replace_check cids stk = Some stk' 
  stack_item_tagged_NoDup (stk ++ stk0) 
  t  active_SRO (stk ++ stk0)  t  active_SRO (stk' ++ stk0).
Proof. by apply replace_check'_active_SRO_preserving. Qed.

Lemma access1_active_SRO_preserving stk stk' kind tg cids n pm t opro:
  stack_item_tagged_NoDup stk 
  mkItem pm (Tagged t) opro  stk' 
  access1 stk kind tg cids = Some (n, stk') 
  t  active_SRO stk  t  active_SRO stk'.
Proof.
  intros ND IN.
  rewrite /access1. case find_granting as [gip|]; [|done]. simpl.
  destruct kind.
  - case replace_check as [stk1|] eqn:Eq; [|done].
    simpl. intros ?. simplify_eq.
    rewrite -{1}(take_drop gip.1 stk). intros HD.
    rewrite -{1}(take_drop gip.1 stk) in ND.
    eapply replace_check_active_SRO_preserving; eauto. done.
  - case find_first_write_incompatible as [idx|]; [|done]. simpl.
    case remove_check as [stk1|] eqn:Eq; [|done].
    simpl. intros ?. simplify_eq.
    have SUB: stk1 ++ drop gip.1 stk `sublist_of` stk.
    { rewrite -{2}(take_drop gip.1 stk). apply sublist_app; [|done].
      move : Eq. apply remove_check_sublist. }
    eapply sublist_active_SRO_preserving; eauto. done.
Qed.

(** Removing incompatible items *)
Lemma find_granting_incompatible_head stk kind t ti idx pm pmi oproi
  (HD: is_stack_head (mkItem pmi (Tagged ti) oproi) stk)
  (NEQ: t  ti) :
  find_granting stk kind (Tagged t) = Some (idx, pm) 
  is_stack_head (mkItem pmi (Tagged ti) oproi) (take idx stk).
Proof.
  destruct HD as [stk' Eqi]. rewrite Eqi.
  rewrite /find_granting /= decide_False; last (intros [_ Eq]; by inversion Eq).
  case list_find => [[idx' pm'] /=|//]. intros . simplify_eq. simpl.
  by eexists.
Qed.

Hai Dang's avatar
Hai Dang committed
321
(* Writing *)
Hai Dang's avatar
Hai Dang committed
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
Lemma find_first_write_incompatible_head stk pm idx t opro pmi
  (HD: is_stack_head (mkItem pmi t opro) stk)
  (NSRW: pmi  SharedReadWrite) :
  find_first_write_incompatible stk pm = Some idx  (0 < idx)%nat.
Proof.
  set it := (mkItem pmi t opro).
  destruct HD as [stk' Eqi]. rewrite Eqi.
  destruct pm; [..|done|done]; simpl.
  - intros. simplify_eq. lia.
  - rewrite reverse_cons.
    destruct (list_find_elem_of (λ it, it.(perm)  SharedReadWrite)
                (reverse stk' ++ [it]) it) as [[id fnd] Eqf]; [set_solver|done|].
    rewrite Eqf.
    intros. simplify_eq. apply list_find_Some in Eqf as [Eqi ?].
    apply lookup_lt_Some in Eqi.
    rewrite app_length /= reverse_length Nat.add_1_r in Eqi. lia.
Qed.

Lemma remove_check_incompatible_items cids stk stk' stk0 n it i t
  (ND: stack_item_tagged_NoDup (stk ++ stk0)) :
  it.(tg) = Tagged t  stk !! i = Some it  (i < n)%nat 
  remove_check cids stk n = Some stk' 
   it', it'.(tg) = Tagged t  it'  (stk' ++ stk0)  False.
Proof.
  intros Eqt. revert i stk stk0 ND.
  induction n as [|n IH]; simpl; intros i stk stk0 ND Eqit Lt; [lia|].
  destruct stk as [|it' stk]; [done|]. simpl.
  case check_protector; [|done].
  destruct i as [|i].
  - simpl in Eqit. simplify_eq.
    intros SUB%remove_check_sublist it' Eq' IN.
    have SUB': stk' ++ stk0 `sublist_of` stk ++ stk0 by apply sublist_app.
    rewrite -> SUB' in IN.
    clear -ND Eqt Eq' IN.
    move : ND.
    rewrite /stack_item_tagged_NoDup filter_cons decide_True;
            [|by rewrite /is_tagged Eqt].
    rewrite fmap_cons NoDup_cons Eqt -Eq'.
    intros [IN' _]. apply IN'. apply elem_of_list_fmap.
    exists it'. split; [done|]. apply elem_of_list_filter. by rewrite /is_tagged Eq'.
  - apply (IH i); [|done|lia]. by apply stack_item_tagged_NoDup_cons_1 in ND.
Qed.

Lemma access1_write_remove_incompatible_head stk t ti cids n stk'
  (ND: stack_item_tagged_NoDup stk) :
  ( oproi, is_stack_head (mkItem Unique (Tagged ti) oproi) stk) 
  access1 stk AccessWrite (Tagged t) cids = Some (n, stk') 
  t  ti 
   pm opro, (mkItem pm (Tagged ti) opro)  stk'  False.
Proof.
  intros HD. rewrite /access1.
  case find_granting as [[n' pm']|] eqn:GRANT; [|done]. simpl.
  case find_first_write_incompatible as [idx|] eqn:INC; [|done]. simpl.
  case remove_check as [stk1|] eqn:Eq; [|done].
  simpl. intros ?. simplify_eq.
  intros NEQ. destruct HD as [oproi HD].
  have HD' := find_granting_incompatible_head _ _ _ _ _ _ _ _ HD NEQ GRANT.
  have Gt0 := find_first_write_incompatible_head _ _ _ _ _ _ HD' (ltac:(done)) INC.
  rewrite -{1}(take_drop n stk) in ND.
  intros pm opro.
  have EQH : take n stk !! 0%nat = Some (mkItem Unique (Tagged ti) oproi).
  { destruct HD' as [? Eq']. by rewrite Eq'. }
  eapply (remove_check_incompatible_items _ _ _ _ idx
            (mkItem Unique (Tagged ti) oproi) O ti ND); done.
Qed.

Hai Dang's avatar
Hai Dang committed
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
(* Reading *)
Lemma replace_check'_incompatible_items cids acc stk stk' stk0 it t
  (ND: stack_item_tagged_NoDup (acc ++ stk ++ stk0)) :
  it.(tg) = Tagged t  it.(perm) = Unique  it  stk 
  replace_check' cids acc stk = Some stk' 
   it', it'.(tg) = Tagged t  it'  (stk' ++ stk0)  it'.(perm) = Disabled.
Proof.
  intros Eqt IU IN. revert acc ND.
  induction stk as [|it0 stk IH]; simpl; intros acc ND; [set_solver|].
  case decide => ?; [case check_protector; [|done]|]; last first.
  { move => /(IH ltac:(set_solver)).
    rewrite -(app_assoc acc [it0] (stk ++ stk0)).
    intros IH1 it' Eqit' Init'. apply IH1; [done..|]. clear -Init'. set_solver. }
  move => RC.
  have ND3: stack_item_tagged_NoDup
    ((acc ++ [mkItem Disabled it0.(tg) it0.(protector)]) ++ stk ++ stk0).
  { move : ND. clear.
    rewrite (app_assoc acc [it0]) 2!(Permutation_app_comm acc) -2!app_assoc.
    rewrite /stack_item_tagged_NoDup 2!filter_cons /=.
    case decide => ?; [rewrite decide_True //|rewrite decide_False //]. }
  have IN1:= (replace_check'_acc_result _ _ _ _ RC).
  have IN': mkItem Disabled it0.(tg) it0.(protector)  stk' ++ stk0 by set_solver.
  have ND4 := replace_check'_stack_item_tagged_NoDup_2 _ _ _ _ _ RC ND3.
  apply elem_of_cons in IN as [|IN].
  { intros it' Eqt' Init'. subst it0.
    have ? : it' = mkItem Disabled it.(tg) it.(protector).
    { apply (stack_item_tagged_NoDup_eq _ _ _ t ND4 Init' IN' Eqt').
      by rewrite Eqt. }
    by subst it'. }
  apply (IH IN _ ND3 RC).
Qed.

Lemma replace_check_incompatible_items cids stk stk' stk0 it t
  (ND: stack_item_tagged_NoDup (stk ++ stk0)) :
  it.(tg) = Tagged t  it.(perm) = Unique  it  stk 
  replace_check cids stk = Some stk' 
   it', it'.(tg) = Tagged t  it'  (stk' ++ stk0)  it'.(perm) = Disabled.
Proof. intros ????. eapply (replace_check'_incompatible_items _ []); eauto. Qed.

Lemma access1_read_replace_incompatible_head stk t ti cids n stk'
  (ND: stack_item_tagged_NoDup stk) :
  ( oproi, is_stack_head (mkItem Unique (Tagged ti) oproi) stk) 
  access1 stk AccessRead (Tagged t) cids = Some (n, stk') 
  t  ti 
   pm opro, (mkItem pm (Tagged ti) opro)  stk'  pm = Disabled.
Proof.
  intros HD. rewrite /access1.
  case find_granting as [[n' pm']|] eqn:GRANT; [|done]. simpl.
  case replace_check as [stk1|] eqn:Eq; [|done].
  simpl. intros ?. simplify_eq.
  intros NEQ pm opro. destruct HD as [oproi HD].
  rewrite -{1}(take_drop n stk) in ND.
  eapply (replace_check_incompatible_items _ _ _ _ (mkItem Unique (Tagged ti) oproi) ti ND);
    try done.
  have HD' := find_granting_incompatible_head _ _ _ _ _ _ _ _ HD NEQ GRANT.
  clear -HD'. destruct HD' as [? EqD]. rewrite EqD. by left.
Qed.

Lemma access1_read_replace_incompatible_head_protector stk t ti cids n stk' c :
  (is_stack_head (mkItem Unique (Tagged ti) (Some c)) stk) 
  c  cids 
  access1 stk AccessRead (Tagged t) cids = Some (n, stk') 
  t  ti  False.
Proof.
  intros HD ACTIVE. rewrite /access1.
  case find_granting as [[n' pm']|] eqn:GRANT; [|done]. simpl.
  case replace_check as [stk1|] eqn:Eq; [|done].
  simpl. intros ?. simplify_eq. intros NEQ.
  have HD' := find_granting_incompatible_head _ _ _ _ _ _ _ _ HD NEQ GRANT.
  destruct HD' as [stk' Eqs].
  move : Eq. rewrite Eqs /replace_check /= /check_protector /=.
Abort.

Hai Dang's avatar
Hai Dang committed
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
Lemma active_SRO_elem_of t stk :
  t  active_SRO stk   i it, stk !! i = Some it  it.(tg) = Tagged t 
  it.(perm) = SharedReadOnly 
   j jt, (j < i)%nat  stk !! j = Some jt  jt.(perm) = SharedReadOnly.
Proof.
  induction stk as [|it' stk IH]; simpl; [set_solver|].
  destruct it'.(perm) eqn:Eqp; [set_solver..| |set_solver].
  destruct it'.(tg) eqn:Eqt;
    [rewrite elem_of_union elem_of_singleton; intros [?|Eq]; [subst|]|].
  - exists O, it'. repeat split; [done..|intros; lia].
  - destruct (IH Eq) as (i & it1 & ? & ? & ? & HL).
    exists (S i), it1. repeat split; [done..|].
    intros j jt Lt. destruct j; simpl.
    + intros. by simplify_eq.
    + apply HL. lia.
  - intros Eq. destruct (IH Eq) as (i & it1 & ? & ? & ? & HL).
    exists (S i), it1. repeat split; [done..|].
    intros j jt Lt. destruct j; simpl.
    + intros. by simplify_eq.
    + apply HL. lia.
Qed.

Lemma find_granting_incompatible_active_SRO stk t ti idx pm
  (HD: ti  active_SRO stk) :
  find_granting stk AccessWrite (Tagged t) = Some (idx, pm) 
  ti  active_SRO (take idx stk).
Proof.
  revert idx. induction stk as [|it stk IH]; simpl; intros idx; [set_solver|].
  move : HD. rewrite /find_granting /=.
  destruct it.(perm) eqn:Eqp; [set_solver..| |set_solver].
  rewrite decide_False; last (intros [PM _]; by rewrite Eqp in PM).
  destruct (list_find (matched_grant AccessWrite (Tagged t)) stk)
    as [[n' pm']|] eqn:Eql; [|done].
  simpl. intros IN ?. simplify_eq. rewrite /= Eqp. move : IN.
  destruct it.(tg) eqn:Eqt; simpl;
    [rewrite elem_of_union elem_of_singleton; intros [|IN]; [subst|]|]; simpl.
  - set_solver.
  - rewrite elem_of_union. right. apply IH. done. by rewrite /find_granting Eql.
  - intros ?. apply IH. done. by rewrite /find_granting Eql.
Qed.

Lemma find_first_write_incompatible_active_SRO stk pm idx :
  find_first_write_incompatible stk pm = Some idx 
   t, t  active_SRO stk   i it, stk !! i = Some it 
    it.(tg) = Tagged t  (i < idx)%nat.
Proof.
  intros EF t IN.
  destruct (active_SRO_elem_of _ _ IN) as (i1 & it1 & Eqit1 & Eqt1 & Eqp1 & HL1).
  move  : EF.
  destruct pm; [| |done..].
  { simpl. intros. simplify_eq. exists i1, it1.
    repeat split; [done..|]. by eapply lookup_lt_Some. }
  simpl.
  destruct (list_find_elem_of (λ it, it.(perm)  SharedReadWrite) (reverse stk) it1)
    as [[n1 pm1] Eqpm1].
  { rewrite elem_of_reverse. by eapply elem_of_list_lookup_2. }
  { by rewrite Eqp1. }
  rewrite Eqpm1. intros. simplify_eq.
  exists i1, it1. repeat split; [done..|].
  apply list_find_Some_not_earlier in Eqpm1 as (Eqrv & Eqpmv & HLv).
  case (decide (i1 + n1 < length stk)%nat) => [?|]; [lia|].
  rewrite Nat.nlt_ge => GE. exfalso.
  destruct (reserve_lookup _ _ _ Eqit1) as (j & Eqj & Eql).
  have Lt: (j < n1)%nat by lia.
  specialize (HLv _ _ Lt Eqj). rewrite Eqp1 in HLv. by apply HLv.
Qed.

Lemma access1_write_remove_incompatible_active_SRO stk t ti cids n stk'
  (ND: stack_item_tagged_NoDup stk) :
  (ti  active_SRO stk) 
  access1 stk AccessWrite (Tagged t) cids = Some (n, stk') 
   pm opro, (mkItem pm (Tagged ti) opro)  stk'  False.
Proof.
  intros HD. rewrite /access1.
  case find_granting as [[n' pm']|] eqn:GRANT; [|done]. simpl.
  case find_first_write_incompatible as [idx|] eqn:INC; [|done]. simpl.
  case remove_check as [stk1|] eqn:Eq; [|done].
  simpl. intros ?. simplify_eq.
  intros NEQ.
  have HD' := find_granting_incompatible_active_SRO _ _ _ _ _ HD GRANT.
  destruct (find_first_write_incompatible_active_SRO _ _ _ INC _ HD')
    as (i & it & Eqi & Eqt & Lt).
  rewrite -{1}(take_drop n stk) in ND. intros ?.
  eapply (remove_check_incompatible_items _ _ _ _ idx it i ti ND); eauto.
Qed.
Hai Dang's avatar
Hai Dang committed
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

(* Property of [t] that when used to access [stk], it will not change [stk] *)
Definition stack_preserving_tag
  (stk: stack) (t: ptr_id) (k: access_kind) : Prop :=
   n pm, find_granting stk k (Tagged t) = Some (n, pm) 
    match k with
    | AccessRead =>  it, it  take n stk  it.(perm)  Unique
    | AccessWrite => find_first_write_incompatible (take n stk) pm = Some O
    end.

Lemma stack_preserving_tag_elim stk t kind :
  stack_preserving_tag stk t kind 
   cids,  n stk',
  access1 stk kind (Tagged t) cids = Some (n, stk')  stk' = stk.
Proof.
Abort.

Lemma stack_preserving_tag_intro stk kind t cids n stk' :
  access1 stk kind (Tagged t) cids = Some (n, stk') 
  stack_preserving_tag stk' t kind.
Proof.
Abort.

Lemma stack_preserving_tag_unique_head stk t opro kind :
  is_stack_head (mkItem Unique (Tagged t) opro) stk 
  stack_preserving_tag stk t kind.
Proof.
Abort.

Lemma stack_preserving_tag_active_SRO stk t :
  t  active_SRO stk  stack_preserving_tag stk t AccessRead.
Proof.
Abort.
Hai Dang's avatar
Hai Dang committed
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639


Lemma tag_unique_head_access cids stk t opro kind :
  is_stack_head (mkItem Unique (Tagged t) opro) stk 
   n, access1 stk kind (Tagged t) cids = Some (n, stk).
Proof.
  intros [stk1 Eqstk]. 
  rewrite /access1.
  have Eq1: list_find (matched_grant kind (Tagged t)) stk =
    Some (O, mkItem Unique (Tagged t) opro).
  { apply list_find_Some_not_earlier. split; last split.
    rewrite Eqstk //. done. intros; lia. }
  have Eq2: find_granting stk kind (Tagged t) = Some (O, Unique).
  { rewrite /= /find_granting Eq1 //. }
  rewrite Eq2 /=.
  exists O. by destruct kind.
Qed.

Lemma replace_check'_preserve cids acc stk :
  ( it, it  stk  it.(perm)  Unique) 
  replace_check' cids acc stk = Some (acc ++ stk).
Proof.
  revert acc. induction stk as [|it' stk IH]; intros acc IN.
  { rewrite /= app_nil_r //. }
  rewrite /= decide_False; last by (apply IN; left).
  rewrite (app_assoc acc [it'] stk). apply IH. set_solver.
Qed.

Lemma replace_check_preserve cids stk :
  ( it, it  stk  it.(perm)  Unique) 
  replace_check cids stk = Some stk.
Proof. apply replace_check'_preserve. Qed.

Lemma tag_SRO_top_access cids stk t :
  t  active_SRO stk 
   n, access1 stk AccessRead (Tagged t) cids = Some (n, stk).
Proof.
  intros IN.
  destruct (active_SRO_elem_of _ _ IN) as (i1 & it1 & Eqit1 & Eqt1 & Eqp1 & HL1).
  rewrite /= /access1.
   have Eq1: is_Some (list_find (matched_grant AccessRead (Tagged t)) stk).
  { apply (list_find_elem_of _ _ it1).
    by eapply elem_of_list_lookup_2. by rewrite /matched_grant Eqp1. }
  destruct Eq1 as [[n2 it2] Eq2].
  have Eq3: find_granting stk AccessRead (Tagged t) = Some (n2, it2.(perm)).
  { rewrite /= /find_granting Eq2 //. }
  rewrite Eq3 /=. exists n2.
  rewrite replace_check_preserve.
  - rewrite /= take_drop //.
  - apply list_find_Some_not_earlier in Eq2 as (Eq2 & GR & LT).
    have Lti1: (n2  i1)%nat.
    { case (decide (n2  i1)%nat) => [//|/Nat.nle_gt Lt].
      exfalso. apply (LT _ _ Lt Eqit1). rewrite /matched_grant Eqp1 //. }
    intros it [k Eqk]%elem_of_list_lookup_1.
    have Ltk : (k < n2)%nat.
    { rewrite -(take_length_le stk n2).
      by eapply lookup_lt_Some. apply Nat.lt_le_incl; by eapply lookup_lt_Some. }
    have HL: stk !! k = Some it. { rewrite -(lookup_take _ n2) //. }
    have Ltk2: (k < i1)%nat. { eapply Nat.lt_le_trans; eauto. }
    by rewrite (HL1 _ _ Ltk2 HL).
Qed.