From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import frac auth upred gmap dec_agree upred_big_op csum.
From iris_atomic Require Export treiber misc evmap.
Section defs.
Context `{heapG Σ, !evidenceG loc val unitR Σ} (N: namespace).
Context (R: val → iProp Σ) (γ: gname) `{∀ x, TimelessP (R x)}.
Definition allocated hd := (∃ q v, hd ↦{q} v)%I.
Definition evs := ev loc val γ.
Fixpoint is_list' (hd: loc) (xs: list val) : iProp Σ :=
match xs with
| [] => (∃ q, hd ↦{ q } NONEV)%I
| x :: xs => (∃ (hd': loc) q, hd ↦{q} SOMEV (x, #hd') ★ evs hd x ★ is_list' hd' xs)%I
end.
Lemma in_list' x xs:
∀ hd, x ∈ xs →
is_list' hd xs
⊢ ∃ (hd' hd'': loc) q, hd' ↦{q} SOMEV (x, #hd'') ★ evs hd' x.
Proof.
induction xs as [|x' xs' IHxs'].
- intros ? Hin. inversion Hin.
- intros hd Hin. destruct (decide (x = x')) as [->|Hneq].
+ iIntros "Hls". simpl.
iDestruct "Hls" as (hd' q) "(? & ? & ?)".
iExists hd, hd', q. iFrame.
+ assert (x ∈ xs') as Hin'; first set_solver.
iIntros "Hls". simpl.
iDestruct "Hls" as (hd' q) "(? & ? & ?)".
iApply IHxs'=>//.
Qed.
Definition perR' hd v v' := (v = ((∅: unitR), DecAgree v') ★ R v' ★ allocated hd)%I.
Definition perR hd v := (∃ v', perR' hd v v')%I.
Definition allR := (∃ m : evmapR loc val unitR, own γ (● m) ★ [★ map] hd ↦ v ∈ m, perR hd v)%I.
Definition is_stack' xs s := (∃ hd: loc, s ↦ #hd ★ is_list' hd xs ★ allR)%I.
Global Instance is_list'_timeless hd xs: TimelessP (is_list' hd xs).
Proof. generalize hd. induction xs; apply _. Qed.
Global Instance is_stack'_timeless xs s: TimelessP (is_stack' xs s).
Proof. apply _. Qed.
Lemma dup_is_list': ∀ xs hd,
heap_ctx ★ is_list' hd xs ⊢ |=r=> is_list' hd xs ★ is_list' hd xs.
Proof.
induction xs as [|y xs' IHxs'].
- iIntros (hd) "(#? & Hs)".
simpl. iDestruct "Hs" as (q) "[Hhd Hhd']". iSplitL "Hhd"; eauto.
- iIntros (hd) "(#? & Hs)". simpl.
iDestruct "Hs" as (hd' q) "([Hhd Hhd'] & #Hev & Hs')".
iDestruct (IHxs' with "[Hs']") as "==>[Hs1 Hs2]"; first by iFrame.
iVsIntro. iSplitL "Hhd Hs1"; iExists hd', (q / 2)%Qp; by iFrame.
Qed.
Lemma extract_is_list: ∀ xs hd,
heap_ctx ★ is_list' hd xs ⊢ |=r=> is_list' hd xs ★ is_list hd xs.
Proof.
induction xs as [|y xs' IHxs'].
- iIntros (hd) "(#? & Hs)".
simpl. iDestruct "Hs" as (q) "[Hhd Hhd']". iSplitL "Hhd"; eauto.
- iIntros (hd) "(#? & Hs)". simpl.
iDestruct "Hs" as (hd' q) "([Hhd Hhd'] & Hev & Hs')".
iDestruct (IHxs' with "[Hs']") as "==>[Hs1 Hs2]"; first by iFrame.
iVsIntro. iSplitL "Hhd Hs1 Hev"; iExists hd', (q / 2)%Qp; by iFrame.
Qed.
Definition f_spec (xs: list val) (s: loc) (f: val) (Rf RI: iProp Σ) := (* Rf, RI is some frame *)
∀ Φ (x: val),
heapN ⊥ N → x ∈ xs →
heap_ctx ★ inv N ((∃ xs, is_stack' xs s) ★ RI) ★ Rf ★ (Rf -★ Φ #())
⊢ WP f x {{ Φ }}.
End defs.
Section proofs.
Context `{heapG Σ, !evidenceG loc val unitR Σ} (N: namespace).
Context (R: val → iProp Σ).
Lemma new_stack_spec' Φ RI:
heapN ⊥ N →
heap_ctx ★ RI ★ (∀ γ s : loc, inv N ((∃ xs, is_stack' R γ xs s) ★ RI) -★ Φ #s)
⊢ WP new_stack #() {{ Φ }}.
Proof.
iIntros (HN) "(#Hh & HR & HΦ)".
iVs (own_alloc (● (∅: evmapR loc val unitR) ⋅ ◯ ∅)) as (γ) "[Hm Hm']".
{ apply auth_valid_discrete_2. done. }
wp_seq. wp_bind (ref NONE)%E. wp_alloc l as "Hl".
wp_alloc s as "Hs".
iAssert ((∃ xs : list val, is_stack' R γ xs s) ★ RI)%I with "[-HΦ Hm']" as "Hinv".
{ iFrame. iExists [], l. iFrame. simpl. iSplitL "Hl".
- eauto.
- iExists ∅. iSplitL. iFrame. by iApply (big_sepM_empty (fun hd v => perR R hd v)). }
iVs (inv_alloc N _ ((∃ xs : list val, is_stack' R γ xs s) ★ RI)%I with "[-HΦ Hm']") as "#?"; first eauto.
by iApply "HΦ".
Qed.
Lemma iter_spec Φ γ s (Rf RI: iProp Σ):
∀ xs hd (f: expr) (f': val),
heapN ⊥ N → f_spec N R γ xs s f' Rf RI → to_val f = Some f' →
heap_ctx ★ inv N ((∃ xs, is_stack' R γ xs s) ★ RI) ★
is_list' γ hd xs ★ Rf ★ (Rf -★ Φ #())
⊢ WP (iter #hd) f {{ v, Φ v }}.
Proof.
induction xs as [|x xs' IHxs'].
- simpl. iIntros (hd f f' HN ? ?) "(#Hh & #? & Hxs1 & HRf & HΦ)".
iDestruct "Hxs1" as (q) "Hhd".
wp_rec. wp_value. iVsIntro. wp_let. wp_load. wp_match. by iApply "HΦ".
- simpl. iIntros (hd f f' HN Hf ?) "(#Hh & #? & Hxs1 & HRf & HΦ)".
iDestruct "Hxs1" as (hd2 q) "(Hhd & Hev & Hhd2)".
wp_rec. wp_value. iVsIntro. wp_let. wp_load. wp_match. wp_proj.
wp_bind (f' _). iApply Hf=>//; first set_solver. iFrame "#". iFrame. iIntros "HRf".
wp_seq. wp_proj. iApply (IHxs' with "[-]")=>//.
+ rewrite /f_spec. iIntros (? ? ? ?) "(#? & #? & ? & ?)".
iApply Hf=>//.
* set_solver.
* iFrame "#". by iFrame.
+ apply to_of_val.
+ iFrame "#". by iFrame.
Qed.
Lemma push_spec Φ γ (s: loc) (x: val) RI:
heapN ⊥ N →
heap_ctx ★ R x ★ inv N ((∃ xs, is_stack' R γ xs s) ★ RI) ★ ((∃ hd, evs γ hd x) -★ Φ #())
⊢ WP push #s x {{ Φ }}.
Proof.
iIntros (HN) "(#Hh & HRx & #? & HΦ)".
iDestruct (push_atomic_spec N s x with "Hh") as "Hpush"=>//.
iSpecialize ("Hpush" $! (R x) (fun _ ret => (∃ hd, evs γ hd x) ★ ret = #())%I with "[]").
- iIntros "!# Rx".
(* open the invariant *)
iInv N as "[IH1 ?]" "Hclose".
iDestruct "IH1" as (xs hd) "[>Hs [>Hxs HR]]".
iDestruct (extract_is_list with "[Hxs]") as "==>[Hxs Hxs']"; first by iFrame.
iDestruct (dup_is_list with "[Hxs']") as "[Hxs'1 Hxs'2]"; first by iFrame.
(* mask magic *)
iVs (pvs_intro_mask' (⊤ ∖ nclose N) heapN) as "Hvs"; first set_solver.
iVsIntro. iExists (xs, hd).
iFrame "Hs Hxs'1". iSplit.
+ (* provide a way to rollback *)
iIntros "[Hs Hl']".
iVs "Hvs". iVs ("Hclose" with "[-Rx]"); last done.
{ iNext. iFrame. iExists xs. iExists hd. by iFrame. }
+ (* provide a way to commit *)
iIntros (v) "Hs".
iDestruct "Hs" as (hd') "[% [Hs [[Hhd'1 Hhd'2] Hxs']]]". subst.
iVs "Hvs".
iDestruct "HR" as (m) "[>Hom HRm]".
destruct (m !! hd') eqn:Heqn.
* iDestruct (big_sepM_delete_later (perR R) m with "HRm") as "[Hx ?]"=>//.
iDestruct "Hx" as (?) "(_ & _ & >Hhd'')".
iDestruct (heap_mapsto_op_1 with "[Hhd'1 Hhd'2]") as "[_ Hhd]"; first iFrame.
rewrite Qp_div_2.
iDestruct "Hhd''" as (q v) "Hhd''". iExFalso.
iApply (bogus_heap hd' 1%Qp q); first apply Qp_not_plus_q_ge_1.
iFrame "#". iFrame.
* iAssert (evs γ hd' x ★ ▷ (allR R γ))%I
with "==>[Rx Hom HRm Hhd'1]" as "[#Hox ?]".
{
iDestruct (evmap_alloc _ _ _ m with "[Hom]") as "==>[Hom Hox]"=>//.
iDestruct (big_sepM_insert_later (perR R) m) as "H"=>//.
iSplitL "Hox".
{ rewrite /evs /ev. eauto. }
iExists (<[hd' := ((), DecAgree x)]> m).
iFrame. iApply "H". iFrame. iExists x.
iFrame. rewrite /allocated. iSplitR "Hhd'1"; auto.
}
iVs ("Hclose" with "[-]").
{ iNext. iFrame. iExists (x::xs).
iExists hd'. iFrame.
iExists hd, (1/2)%Qp. by iFrame.
}
iVsIntro. iSplitL; last auto. by iExists hd'.
- iApply wp_wand_r. iSplitL "HRx Hpush".
+ by iApply "Hpush".
+ iIntros (?) "H". iDestruct "H" as (_) "[? %]". subst.
by iApply "HΦ".
Qed.
(* some helpers *)
Lemma access (γ: gname) (x: val) (xs: list val) (m: evmapR loc val unitR) :
∀ hd: loc,
x ∈ xs →
▷ ([★ map] hd↦v ∈ m, perR R hd v) ★ own γ (● m) ★
is_list' γ hd xs
⊢ ∃ hd', ▷ ([★ map] hd↦v ∈ delete hd' m, perR R hd v) ★
▷ perR R hd' ((∅: unitR), DecAgree x) ★ m !! hd' = Some ((∅: unitR), DecAgree x) ★ own γ (● m).
Proof.
induction xs as [|x' xs' IHxs'].
- iIntros (? Habsurd). inversion Habsurd.
- destruct (decide (x = x')) as [->|Hneq].
+ iIntros (hd _) "(HR & Hom & Hxs)".
simpl. iDestruct "Hxs" as (hd' q) "[Hhd [#Hev Hxs']]".
rewrite /evs.
iDestruct (ev_map_witness _ _ _ m with "[Hev Hom]") as %H'; first by iFrame.
iDestruct (big_sepM_delete_later (perR R) m with "HR") as "[Hp HRm]"=>//.
iExists hd. by iFrame.
+ iIntros (hd ?).
assert (x ∈ xs'); first set_solver.
iIntros "(HRs & Hom & Hxs')".
simpl. iDestruct "Hxs'" as (hd' q) "[Hhd [Hev Hxs']]".
iDestruct (IHxs' hd' with "[HRs Hxs' Hom]") as "?"=>//.
iFrame.
Qed.
End proofs.