diff --git a/theories/examples/ro_test.v b/theories/examples/ro_test.v new file mode 100644 index 0000000000000000000000000000000000000000..9ed16d98c8b674e445350f03969b3455124ae754 --- /dev/null +++ b/theories/examples/ro_test.v @@ -0,0 +1,29 @@ +From iris.program_logic Require Export weakestpre. +From iris.proofmode Require Import tactics. +From igps Require Import persistor fractor notation weakestpre ro na invariants proofmode ghosts. +Import uPred lang.base. + +Section test. + Context `{fG : foundationG Σ} + `{persG : persistorG Σ} + {cG : cancelable_invariants.cinvG Σ}. + +Lemma test N l v V (HN: ↑physN ∪ ↑fracN ## namespaces.nclose N): + {{{ ⎡PSCtx⎤ ∗ inv N (own_loc_ro l v V) ∗ monPred_in V }}} [ #l]_na {{{ RET #v; emp }}}. +Proof. + intros; iIntros "(#kI & #inv & in) Hpost". + iMod (inv_open with "inv") as "[oL Hclose]"; first done. + iMod (timeless with "oL") as "oL". + { admit. } + iPoseProof (all_now with "oL") as "oL". + iPoseProof (ro_split with "[$in $oL]") as "[oL oL']". + iDestruct "oL'" as (q) "oL'". + apply disjoint_union_l in HN as []. + iApply (na_read_frac with "[$]"). + { by apply namespaces.ndisj_subseteq_difference. } + { etrans; first apply namespaces.nclose_subseteq. + by apply namespaces.ndisj_subseteq_difference. } + iNext; iIntros (?) "[% oL']"; subst. + iMod ("Hclose" with "[oL]"); first by iApply objective_all. + iApply "Hpost"; auto. +Admitted. \ No newline at end of file diff --git a/theories/invariants.v b/theories/invariants.v index d0e0ec1e28fe073bcf3d50d98b02f9478b035e15..aedb5230eb582d6b2ce206f4344142a16d1e43c7 100644 --- a/theories/invariants.v +++ b/theories/invariants.v @@ -5,55 +5,10 @@ From igps Require Import ghosts viewpred ro. Section Invariants. Context {Σ : gFunctors} `{fG : !foundationG Σ} `{W : invG.invG Σ}. - Definition inv_def : namespaces.namespace → vProp Σ → vProp Σ := - λ N P, MonPred (λ _, invariants.inv N (∀ V, monPred_at P V))%I _. - Definition inv_aux : seal (@inv_def). by eexists. Qed. - Definition inv := unseal (@inv_aux). - Definition inv_eq : inv = _ := seal_eq _. - - Definition inv_contractive : ∀ N (n : nat), Proper (dist_later n ==> dist n) (inv N). - Proof. - intros. rewrite inv_eq /inv_def /=. intros ? ? ? => /=. - split => ?. - refine (invariants.inv_contractive _ _ _ _ _). - destruct n => //. - cbn in *. apply bi.forall_ne. - intros ?. apply H. - Qed. - - Global Instance inv_ne : ∀ N (n : nat), Proper (dist n ==> dist n) (inv N). - Proof. - rewrite inv_eq /inv_def /=. intros. - intros ? ? ? => /=. split => ?. - apply invariants.inv_ne. - apply bi.forall_ne. - intros ?. apply H. - Qed. - - Global Instance inv_Proper : ∀ N, Proper (equiv ==> equiv) (inv N). - Proof. - intros. - rewrite inv_eq /inv_def /=. intros. - intros ? ? ? => /=. split => ?. - apply invariants.inv_Proper. - apply bi.forall_proper. - intros ?. apply H. - Qed. - - Global Instance inv_persistent : ∀ N (P : vProp Σ), Persistent (inv N P). - Proof. - intros. - rewrite inv_eq /inv_def /=. intros. - split => ?. - rewrite /Persistent /=. - rewrite {1}invariants.inv_persistent. - unfold bi_persistently. - iStartProof (uPred _). by iIntros "#? !#". - Qed. + Definition inv N (P : vProp Σ) : vProp Σ := ⎡invariants.inv N (∀ V, monPred_at P V)⎤%I. Lemma inv_alloc N (E : coPset) (P : vProp Σ) : â–· (É P) -∗ |={E}=> inv N P. Proof. - rewrite inv_eq /inv_def /=. iStartProof (uPred _). iIntros (V) "H". iMod (invariants.inv_alloc with "H") as "H". iModIntro. by rewrite monPred_all_eq. @@ -62,7 +17,6 @@ Section Invariants. Lemma inv_alloc_open N (E : coPset) (P : vProp Σ) : ↑N ⊆ E → (|={E,E ∖ ↑N}=> inv N P ∗ (â–· (É P) ={E ∖ ↑N,E}=∗ True))%I. Proof. - rewrite inv_eq /inv_def /=. intros. iStartProof (uPred _). iIntros. iPoseProof (invariants.inv_alloc_open) as "T"; [done|]. @@ -73,7 +27,6 @@ Section Invariants. Lemma inv_open (E : coPset) N (P : vProp Σ) : ↑N ⊆ E → inv N P -∗ |={E,E ∖ ↑N}=> â–· (É P) ∗ (â–· (É P) ={E ∖ ↑N,E}=∗ True). Proof. - rewrite inv_eq /inv_def /=. intros. iStartProof (uPred _). iIntros (?) "H". iPoseProof (invariants.inv_open with "H") as "T"; [done|]. @@ -164,11 +117,6 @@ Section Invariants. Global Instance wand_objective P Q (H : P -∗ Q) : Objective (P -∗ Q)%I. Proof. iStartProof (uPred _). iIntros (??) "H %% HP". by iApply H. Qed. - Global Instance own_loc_ro_objective l v V: Objective (own_loc_ro l v V)%I. - Proof. - iStartProof (uPred _). auto. - Qed. - Lemma all_entails (P Q : vProp Σ) : (P -∗ Q) -> bi_valid (É (P -∗ Q))%I. Proof. intro; iIntros. diff --git a/theories/ro.v b/theories/ro.v index 657a8edb9624e9bb1fd076819a132b071ae04cf2..786ae436c1fcee4253a5c3eba3965590c3e5745b 100644 --- a/theories/ro.v +++ b/theories/ro.v @@ -16,21 +16,4 @@ Section RO. iDestruct "oL2" as (V') "[??]"; eauto. Qed. - Lemma ro_join l v V q' v': own_loc_ro l v V ∗ l ↦{q'} v' ={↑fracN.@l}=∗ own_loc_ro l v V. - Proof. - iStartProof (uPred _). - iIntros (i) "[oL oL']"; iDestruct "oL" as (q) "oL". - iExists (q + q')%Qp. - iApply (na_frac_join with "[>-]"). - rewrite /own_loc_na_frac valloc_local_eq /=. - iDestruct "oL" as (V0) "[% oL]"; iDestruct "oL'" as (V') "[% oL']". -(* iMod (fractor_open with "oL") as (?) "(? & ? & ?)"; first done.*) - iAssert (⌜V0 = V'âŒ)%I as %?. - { admit. } - iAssert ⌜v = v'âŒ%I as %?. - { iPoseProof (fractor_join_l with "[$oL $oL']") as "oL". - iDestruct "oL" as (?) "[[%%] _]"; subst. - apply encode_inj in H4; inversion H4; done. } - subst; iSplitL "oL"; eauto. - Admitted. -End RO. \ No newline at end of file +End RO.