Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
FCS
ocplcoq
Commits
e760dfb5
Commit
e760dfb5
authored
Nov 19, 2015
by
Robbert Krebbers
Browse files
More general RA bigop for finite maps.
parent
1d628d4b
Changes
1
Hide whitespace changes
Inline
Sidebyside
iris/ra.v
View file @
e760dfb5
...
...
@@ 11,14 +11,6 @@ Instance: Params (@op) 2.
Infix
"⋅"
:=
op
(
at
level
50
,
left
associativity
)
:
C_scope
.
Notation
"(⋅)"
:=
op
(
only
parsing
)
:
C_scope
.
Fixpoint
big_op
`
{
Op
A
,
Empty
A
}
(
xs
:
list
A
)
:
A
:=
match
xs
with
[]
=>
∅

x
::
xs
=>
x
⋅
big_op
xs
end
.
Arguments
big_op
_
_
_
!
_
/
.
Instance:
Params
(
@
big_op
)
3.
Definition
big_opM
`
{
FinMapToList
K
A
M
,
Op
A
,
Empty
A
}
(
m
:
M
)
:
A
:=
big_op
(
snd
<
$
>
map_to_list
m
).
Instance:
Params
(
@
big_opM
)
4.
Class
Included
(
A
:
Type
)
:=
included
:
relation
A
.
Instance:
Params
(
@
included
)
2.
Infix
"≼"
:=
included
(
at
level
70
)
:
C_scope
.
...
...
@@ 52,6 +44,16 @@ Class RAEmpty A `{Equiv A, Valid A, Op A, Empty A} : Prop := {
ra_empty_l
:>
LeftId
(
≡
)
∅
(
⋅
)
}
.
(
**
Big
ops
*
)
Fixpoint
big_op
`
{
Op
A
,
Empty
A
}
(
xs
:
list
A
)
:
A
:=
match
xs
with
[]
=>
∅

x
::
xs
=>
x
⋅
big_op
xs
end
.
Arguments
big_op
_
_
_
!
_
/
.
Instance:
Params
(
@
big_op
)
3.
Definition
big_opM
`
{
FinMapToList
K
A
M
,
Op
B
,
Empty
B
}
(
f
:
K
→
A
→
list
B
)
(
m
:
M
)
:
B
:=
big_op
(
map_to_list
m
≫
=
curry
f
).
Instance:
Params
(
@
big_opM
)
4.
(
**
Updates
*
)
Definition
ra_update_set
`
{
Op
A
,
Valid
A
}
(
x
:
A
)
(
P
:
A
→
Prop
)
:=
∀
z
,
valid
(
x
⋅
z
)
→
∃
y
,
P
y
∧
valid
(
y
⋅
z
).
...
...
@@ 147,21 +149,26 @@ Proof.
Qed
.
Context
`
{
FinMap
K
M
}
.
Lemma
big_opM_empty
:
big_opM
(
∅
:
M
A
)
≡
∅
.
Proof
.
unfold
big_opM
.
by
rewrite
map_to_list_empty
.
Qed
.
Lemma
big_opM_insert
(
m
:
M
A
)
i
x
:
m
!!
i
=
None
→
big_opM
(
<
[
i
:=
x
]
>
m
)
≡
x
⋅
big_opM
m
.
Proof
.
intros
?
;
unfold
big_opM
.
by
rewrite
map_to_list_insert
by
done
.
Qed
.
Lemma
big_opM_singleton
i
x
:
big_opM
(
{
[
i
,
x
]
}
:
M
A
)
≡
x
.
Context
`
{
Equiv
B
}
`
{!
Equivalence
((
≡
)
:
relation
B
)
}
(
f
:
K
→
B
→
list
A
).
Lemma
big_opM_empty
:
big_opM
f
(
∅
:
M
B
)
≡
∅
.
Proof
.
by
unfold
big_opM
;
rewrite
map_to_list_empty
.
Qed
.
Lemma
big_opM_insert
(
m
:
M
B
)
i
(
y
:
B
)
:
m
!!
i
=
None
→
big_opM
f
(
<
[
i
:=
y
]
>
m
)
≡
big_op
(
f
i
y
)
⋅
big_opM
f
m
.
Proof
.
intros
?
;
unfold
big_opM
.
by
rewrite
map_to_list_insert
,
bind_cons
,
big_op_app
by
done
.
Qed
.
Lemma
big_opM_singleton
i
(
y
:
B
)
:
big_opM
f
(
{
[
i
,
y
]
}
:
M
B
)
≡
big_op
(
f
i
y
).
Proof
.
unfold
singleton
,
map_singleton
.
rewrite
big_opM_insert
by
auto
using
lookup_empty
;
simpl
.
by
rewrite
big_opM_empty
,
(
right_id
_
_
).
Qed
.
Global
Instance
big_opM_proper
:
Proper
((
≡
)
==>
(
≡
))
(
big_opM
:
M
A
→
_
).
Global
Instance
big_opM_proper
:
(
∀
i
,
Proper
((
≡
)
==>
(
≡
))
(
f
i
))
→
Proper
((
≡
)
==>
(
≡
))
(
big_opM
f
:
M
B
→
A
).
Proof
.
intros
m1
;
induction
m1
as
[

i
x
m1
?
IH
]
using
map_ind
.
{
by
intros
m2
;
rewrite
(
symmetry_iff
(
≡
)),
map_equiv_empty
;
intros
>
.
}
intros
Hf
m1
;
induction
m1
as
[

i
x
m1
?
IH
]
using
map_ind
.
{
by
intros
m2
;
rewrite
(
symmetry_iff
(
≡
)
∅
),
map_equiv_empty
;
intros
>
.
}
intros
m2
Hm2
;
rewrite
big_opM_insert
by
done
.
rewrite
(
IH
(
delete
i
m2
))
by
(
by
rewrite
<
Hm2
,
delete_insert
).
destruct
(
map_equiv_lookup
(
<
[
i
:=
x
]
>
m1
)
m2
i
x
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment