Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
E
examples
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Paolo G. Giarrusso
examples
Commits
80ffd297
Commit
80ffd297
authored
Feb 20, 2019
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Bump Iris.
parent
37145a3b
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
9 additions
and
9 deletions
+9
-9
opam
opam
+1
-1
theories/barrier/proof.v
theories/barrier/proof.v
+1
-1
theories/barrier/protocol.v
theories/barrier/protocol.v
+4
-4
theories/hocap/cg_bag.v
theories/hocap/cg_bag.v
+1
-1
theories/hocap/fg_bag.v
theories/hocap/fg_bag.v
+1
-1
theories/spanning_tree/graph.v
theories/spanning_tree/graph.v
+1
-1
No files found.
opam
View file @
80ffd297
...
...
@@ -9,6 +9,6 @@ build: [make "-j%{jobs}%"]
install: [make "install"]
remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris_examples"]
depends: [
"coq-iris" { (= "dev.2019-02-
18.1.a1cf5cb9
") | (= "dev") }
"coq-iris" { (= "dev.2019-02-
20.0.8a8c1405
") | (= "dev") }
"coq-autosubst" { = "dev.coq86" }
]
theories/barrier/proof.v
View file @
80ffd297
...
...
@@ -122,7 +122,7 @@ Proof.
as
([
p
I
])
"(% & [Hl Hr] & Hclose)"
;
eauto
.
destruct
p
;
[|
done
].
wp_store
.
iSpecialize
(
"HΦ"
with
"[#]"
)
=>
//.
iFrame
"HΦ"
.
iMod
(
"Hclose"
$!
(
State
High
I
)
(
∅
:
set
token
)
with
"[-]"
)
;
last
done
.
iMod
(
"Hclose"
$!
(
State
High
I
)
(
∅
:
prop
set
token
)
with
"[-]"
)
;
last
done
.
iSplit
;
[
iPureIntro
;
by
eauto
using
signal_step
|].
rewrite
/
barrier_inv
/
ress
/=.
iNext
.
iFrame
"Hl"
.
iDestruct
"Hr"
as
(
Ψ
)
"[Hr Hsp]"
;
iExists
Ψ
;
iFrame
"Hsp"
.
...
...
theories/barrier/protocol.v
View file @
80ffd297
...
...
@@ -19,7 +19,7 @@ Inductive prim_step : relation state :=
|
ChangeI
p
I2
I1
:
prim_step
(
State
p
I1
)
(
State
p
I2
)
|
ChangePhase
I
:
prim_step
(
State
Low
I
)
(
State
High
I
).
Definition
tok
(
s
:
state
)
:
set
token
:
=
Definition
tok
(
s
:
state
)
:
prop
set
token
:
=
{[
t
|
∃
i
,
t
=
Change
i
∧
i
∉
state_I
s
]}
∪
(
if
state_phase
s
is
High
then
{[
Send
]}
else
∅
).
Global
Arguments
tok
!
_
/.
...
...
@@ -27,10 +27,10 @@ Global Arguments tok !_ /.
Canonical
Structure
sts
:
=
sts
.
Sts
prim_step
tok
.
(* The set of states containing some particular i *)
Definition
i_states
(
i
:
gname
)
:
set
state
:
=
{[
s
|
i
∈
state_I
s
]}.
Definition
i_states
(
i
:
gname
)
:
prop
set
state
:
=
{[
s
|
i
∈
state_I
s
]}.
(* The set of low states *)
Definition
low_states
:
set
state
:
=
{[
s
|
state_phase
s
=
Low
]}.
Definition
low_states
:
prop
set
state
:
=
{[
s
|
state_phase
s
=
Low
]}.
Lemma
i_states_closed
i
:
sts
.
closed
(
i_states
i
)
{[
Change
i
]}.
Proof
.
...
...
@@ -77,7 +77,7 @@ Proof.
-
destruct
p
;
set_solver
.
-
apply
elem_of_equiv
=>
/=
-[
j
|]
;
last
set_solver
.
set_unfold
;
rewrite
!(
inj_iff
Change
).
assert
(
Change
j
∈
match
p
with
Low
=>
∅
:
set
token
|
High
=>
{[
Send
]}
end
↔
False
)
assert
(
Change
j
∈
match
p
with
Low
=>
∅
:
prop
set
token
|
High
=>
{[
Send
]}
end
↔
False
)
as
->
by
(
destruct
p
;
set_solver
).
destruct
(
decide
(
i1
=
j
))
as
[->|]
;
first
naive_solver
.
destruct
(
decide
(
i2
=
j
))
as
[->|]
;
first
naive_solver
.
...
...
theories/hocap/cg_bag.v
View file @
80ffd297
...
...
@@ -62,7 +62,7 @@ Section proof.
end
.
Definition
bag_inv
(
γ
b
:
gname
)
(
b
:
loc
)
:
iProp
Σ
:
=
(
∃
ls
:
list
val
,
b
↦
(
val_of_list
ls
)
∗
own
γ
b
((
1
/
2
)%
Qp
,
to_agree
(
of_lis
t
ls
)))%
I
.
(
∃
ls
:
list
val
,
b
↦
(
val_of_list
ls
)
∗
own
γ
b
((
1
/
2
)%
Qp
,
to_agree
(
list_to_se
t
ls
)))%
I
.
Definition
is_bag
(
γ
b
:
gname
)
(
x
:
val
)
:
=
(
∃
(
lk
:
val
)
(
b
:
loc
)
(
γ
:
gname
),
...
...
theories/hocap/fg_bag.v
View file @
80ffd297
...
...
@@ -91,7 +91,7 @@ Section proof.
Definition
bag_inv
(
γ
b
:
gname
)
(
b
:
loc
)
:
iProp
Σ
:
=
(
∃
(
hd
:
val
)
(
ls
:
list
val
),
b
↦
hd
∗
is_list
hd
ls
∗
own
γ
b
((
1
/
2
)%
Qp
,
to_agree
(
of_lis
t
ls
)))%
I
.
b
↦
hd
∗
is_list
hd
ls
∗
own
γ
b
((
1
/
2
)%
Qp
,
to_agree
(
list_to_se
t
ls
)))%
I
.
Definition
is_bag
(
γ
b
:
gname
)
(
x
:
val
)
:
=
(
∃
(
b
:
loc
),
⌜
x
=
#
b
⌝
∗
inv
N
(
bag_inv
γ
b
b
))%
I
.
Definition
bag_contents
(
γ
b
:
gname
)
(
X
:
gmultiset
val
)
:
iProp
Σ
:
=
...
...
theories/spanning_tree/graph.v
View file @
80ffd297
...
...
@@ -57,7 +57,7 @@ Section Graphs.
z
∈
t
→
connected
g
z
→
front
g
t
t
→
t
=
dom
(
gset
_
)
g
.
Proof
.
intros
Hz
Hc
[
Hsb
Hdt
].
apply
collection
_equiv_spec_L
;
split
;
trivial
.
apply
set
_equiv_spec_L
;
split
;
trivial
.
apply
elem_of_subseteq
=>
x
Hx
.
destruct
(
Hc
x
Hx
)
as
[
p
pv
].
clear
Hc
Hx
;
revert
z
Hz
pv
.
induction
p
=>
z
Hz
pv
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment