cinc.v 42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
From iris.algebra Require Import excl auth agree frac list cmra.
From iris.base_logic.lib Require Export invariants.
From iris.program_logic Require Export atomic.
From iris.proofmode Require Import tactics.
From iris.heap_lang Require Import proofmode notation.
Import uPred bi List Decidable.
Set Default Proof Using "Type".

(** Using prophecy variables with helping: implementing conditional counter from
    "Logical Relations for Fine-Grained Concurrency" by Turon et al. (POPL 2013) *)

(** * Implementation of the functions. *)

(*
  new_counter() :=
    let c = ref (injL 0) in
    let f = ref false in
    ref (f, c)
 *)
Definition new_counter : val :=
  λ: <>,
    let: "c" := ref (ref (InjL #0)) in
    let: "f" := ref #true in
    ("f", "c").

(*
  set_flag(ctr, b) :=
    ctr.1 <- b
 *)
Definition set_flag : val :=
  λ: "ctr" "b",
    Fst "ctr" <- "b".

(*
  complete(c, f, x, n, p) :=
    Resolve CAS(c, x, ref (injL (if !f then n+1 else n))) p (ref ()) ;; ()
 *)
Definition complete : val :=
  λ: "c" "f" "x" "n" "p",
    Resolve (CAS "c" "x" (ref (InjL (if: !"f" then "n" + #1 else "n")))) "p" (ref #()) ;; #().

(*
  get(c, f) :=
    let x = !c in
    match !x with
    | injL n      => n
    | injR (n, p) => complete c f x n p; get(c, f)
 *)
Definition get : val :=
  rec: "get" "ctr" :=
    let: "f" := Fst "ctr" in
    let: "c" := Snd "ctr" in
    let: "x" := !"c" in
    match: !"x" with
      InjL "n"    => "n"
    | InjR "args" =>
        complete "c" "f" "x" (Fst "args") (Snd "args") ;;
        "get" "ctr"
    end.

(*
  cinc(c, f) :=
    let x = !c in
    match !x with
    | injL n =>
        let p := new proph in
        let y := ref (injR (n, p)) in
        if CAS(c, x, y) then complete(c, f, y, n, p)
        else cinc(c, f)
    | injR (n, p) =>
        complete(c, f, x, n, p);
        cinc(c, f)
 *)
Definition cinc : val :=
  rec: "cinc" "ctr" :=
    let: "f" := Fst "ctr" in
    let: "c" := Snd "ctr" in
    let: "x" := !"c" in
    match: !"x" with
      InjL "n" =>
        let: "p" := NewProph in
        let: "y" := ref (InjR ("n", "p")) in
        if: CAS "c" "x" "y" then complete "c" "f" "y" "n" "p" ;; Skip
        else "cinc" "ctr"
    | InjR "args'" =>
        complete "c" "f" "x" (Fst "args'") (Snd "args'") ;;
        "cinc" "ctr"
    end.

(** ** Proof setup *)

(** To represent histories of allocated locations, we need some helper lemmas
    about suffixes on lists. *)
Section suffixes.

  Lemma suffix_trans (h1 h2 h3 : list loc) :
    h1 `suffix_of` h2 
    h2 `suffix_of` h3 
    h1 `suffix_of` h3.
  Proof.
    intros [? ->] [? ->]. rewrite app_assoc. by eexists.
  Qed.

  Lemma suffix_eq (h1 h2 : list loc) :
    h1 `suffix_of` h2 
    h2 `suffix_of` h1 
    h1 = h2.
  Proof.
    intros [xs ->] [ys Heq]. rewrite <- app_nil_l in Heq at 1. rewrite app_assoc in Heq.
    apply app_inv_tail, eq_sym in Heq. by apply app_eq_nil in Heq as [_ ->].
  Qed.

  Lemma suffix_in (h1 h2 : list loc) l :
    h1 `suffix_of` h2 
    In l h1 
    In l h2.
  Proof.
    destruct h1 as [|y ys]; first done.
    intros Hs Hin. destruct Hs as [l2' ->]. apply in_or_app. by right.
  Qed.

  Lemma suffix_in_head (h1 h2 : list loc) l :
    h1 `suffix_of` h2 
    Some l = head h1 
    In l h2.
  Proof.
    destruct h1 as [|y ys]; first done.
    intros Hs [=->]. eapply suffix_in; first done. apply in_eq.
  Qed.

  (** A helper lemma that will come up in the proof of [complete] *)
  Lemma nodup_suffix_contradiction (l1 l2 l3 : loc) (H1 H2 H3 : list loc) :
    Some l1 = hd_error H1 
    Some l2 = hd_error H2 
    Some l3 = hd_error H3 
    In l3 H1 
    H1 `suffix_of` H2 
    H2 `suffix_of` H3 
    l2  l3 
    NoDup H3 
    False.
  Proof.
    intros Heq Heq' Heq'' Hin Hs Hs' Hn Hd.
    destruct Hs' as [xs ->]. destruct Hs as [ys ->]. destruct (in_split _ _ Hin) as (x & y & ->).
    do 2 rewrite app_assoc in Hd. apply NoDup_remove_2 in Hd.
    (* xs, ys, and x must be empty *)
    destruct xs as [|x' xs]; last first.
    { simpl in *. inversion Heq''. subst.
      contradict Hd. by left. }
    destruct ys as [|y' ys]; last first.
    { simpl in *. inversion Heq''; subst.
      contradict Hd. by left. }
    destruct x as [|z' zs]; last first.
    { simpl in *. inversion Heq''; subst.
      contradict Hd. by left. }
    simpl in *. inversion Heq'; done.
  Qed.

End suffixes.

(** Resource algebra for histories *)
Section histories.

  Inductive hist :=
  | histv (h : list loc) : hist
  | histbot : hist.

  Inductive hist_equiv : Equiv hist :=
  | Hist_equiv h1 h2 : h1 = h2  h1  h2.

  Existing Instance hist_equiv.

  Instance hist_equiv_Equivalence : @Equivalence hist equiv.
  Proof.
    split.
    - move => [|]; by constructor.
    - move => [?|] []; inversion 1; subst; by constructor.
    - move => [?|] [] [];
               inversion 1; inversion 1; subst; by constructor.
  Qed.

  Canonical Structure histC : ofeT := discreteC hist.

  Instance hist_valid : Valid hist :=
    λ x, match x with histv _ => True | histbot => False end.

  Instance hist_op : Op hist := λ h1 h2,
                                match h1, h2 with
                                | histv h1', histv h2' =>
                                  if decide (h1' `suffix_of` h2')
                                  then h2
                                  else if decide (h2' `suffix_of` h1')
                                       then h1
                                       else histbot
                                | _, _ =>
                                  histbot
                                end.

  Arguments op _ _ !_ !_ /.

  Instance hist_PCore : PCore hist := Some.

  Global Instance hist_op_comm: Comm equiv hist_op.
  Proof.
    intros [h1|] [h2|]; auto. simpl.
    case_decide as H1; [case_decide as H2|auto]; last auto.
    constructor. destruct H1. subst.  destruct H2.
    rewrite <- app_nil_l in H at 1. rewrite app_assoc in H.
      by apply app_inv_tail, eq_sym, app_eq_nil in H as [-> ->].
  Qed.

  Global Instance hist_op_idemp : IdemP eq hist_op.
  Proof. intros [|]; [by simpl; rewrite decide_True|auto]. Qed.

  Lemma hist_op_l h1 h2 (Le: h1 `suffix_of` h2) :
    histv h1  histv h2 = histv h2.
  Proof. simpl. case_decide; done. Qed.

  Lemma hist_op_r h1 h2 (Le: h1 `suffix_of` h2) :
    histv h2  histv h1 = histv h2.
  Proof.
    simpl. case_decide.
    - f_equal. by apply suffix_eq.
    - by case_decide.
  Qed.

  Global Instance hist_op_assoc: Assoc equiv (op: Op hist).
  Proof.
    intros [h1|] [h2|] [h3|]; eauto; simpl.
    - repeat (case_decide; auto).
      + rewrite !hist_op_l; auto. etrans; eauto.
      + simpl. repeat case_decide; last done.
        * destruct H as [xs ->]. destruct H2 as [ys [[k [->->]] | [k [->->]]]%app_eq_inv].
          ** contradict H1. by apply suffix_app_r.
          ** contradict H0. by apply suffix_app_r.
        * contradict H1. by etrans.
      + rewrite hist_op_l; [by rewrite hist_op_r|auto].
      + rewrite !hist_op_r; auto. by etrans.
      + simpl. rewrite !decide_False; auto.
      + simpl. rewrite !decide_False; auto.
      + simpl. case_decide.
        * exfalso. apply H. by etrans.
        * case_decide; last done. exfalso.
          destruct H4 as [xs ->]. destruct H2 as [ys [[k [->->]] | [k [->->]]]%app_eq_inv].
          ** contradict H0. by apply suffix_app_r.
          ** contradict H. by apply suffix_app_r.
    - simpl. repeat case_decide; auto.
  Qed.

  Lemma hist_included h1 h2 :
    histv h1  histv h2  h1 `suffix_of` h2.
  Proof.
    split.
    - move => [[?|]]; simpl; last by inversion 1.
      case_decide.
      * inversion 1. naive_solver.
      * case_decide; inversion 1; naive_solver.
    - intros. exists (histv h2). by rewrite hist_op_l.
  Qed.

  Lemma hist_valid_op h1 h2 :
     (histv h1  histv h2)  h1 `suffix_of` h2  h2 `suffix_of` h1.
  Proof. simpl. case_decide; first by left. case_decide; [by right|done]. Qed.

  Lemma hist_core_self (X: hist) : core X = X.
  Proof. done. Qed.

  Instance hist_unit : Unit hist := histv nil.

  Definition hist_ra_mixin : RAMixin hist.
  Proof.
    apply ra_total_mixin; eauto.
    - intros [?|] [?|] [?|]; auto; inversion 1; naive_solver.
    - by destruct 1; constructor.
    - destruct 1. naive_solver.
    - apply hist_op_assoc.
    - apply hist_op_comm.
    - intros ?. by rewrite hist_core_self idemp_L.
    - intros [|] [|]; simpl; done.
  Qed.

  Canonical Structure histR := discreteR hist hist_ra_mixin.

  Global Instance hist_cmra_discrete : CmraDiscrete histR.
  Proof. apply discrete_cmra_discrete. Qed.

  Global Instance hist_core (h: hist) : CoreId h.
  Proof.
    rewrite /CoreId. reflexivity.
  Qed.

  Definition hist_ucmra_mixin : UcmraMixin hist.
  Proof.
    split; [done| |auto]. intros [|]; [simpl|done]. done.
  Qed.

  Lemma hist_local_update h1 X h2 :
    h1 `suffix_of` h2  (histv h1, X) ~l~> (histv h2, histv h2).
  Proof.
    intros Le. rewrite local_update_discrete.
    move => [[h3|]|] /= ? Eq; split => //; last first; move : Eq.
    - destruct X; by inversion 1.
    - destruct X; rewrite /cmra_op /= => Eq;
                                          repeat case_decide; auto; inversion Eq; subst; try naive_solver.
      + constructor. inversion H1. subst. f_equal. by apply suffix_eq.
      + constructor. inversion H2. subst. f_equal. apply suffix_eq; by etrans.
      + inversion H3; subst. by apply (suffix_trans _ _ _ H0) in Le.
  Qed.

  Canonical Structure histUR := UcmraT hist hist_ucmra_mixin.

End histories.

Definition histListUR := optionUR $ prodR fracR $ agreeR $ listC locC.

Definition historyUR := prodUR (authUR histListUR) (authUR histUR).
Definition flagUR    := authR $ optionUR $ exclR boolC.
Definition numUR     := authR $ optionUR $ exclR ZC.
Definition tokenUR   := authR $ optionUR $ exclR valC.

Class cincG Σ := ConditionalIncrementG {
                     cinc_historyG :> inG Σ historyUR;
                     cinc_flagG    :> inG Σ flagUR;
                     cinc_numG     :> inG Σ numUR;
                     cinc_tokenG   :> inG Σ tokenUR;
                   }.

Definition cincΣ : gFunctors :=
  #[GFunctor historyUR; GFunctor flagUR; GFunctor numUR; GFunctor tokenUR].

Instance subG_cincΣ {Σ} : subG cincΣ Σ  cincG Σ.
Proof. solve_inG. Qed.

Section conditional_counter.
  Context {Σ} `{!heapG Σ, !cincG Σ}.
  Context (N : namespace).

  Local Definition stateN   := N .@ "state".
  Local Definition counterN := N .@ "counter".

  Definition token : tokenUR :=
     Excl' #().

  Definition histList (H : list loc) (q : Qp) : histListUR :=
    Some (q, to_agree H).

  Definition half_history_frag (H : list loc) : historyUR :=
    ( (histList H (1/2)%Qp),  (histv H)).

  Definition full_history_frag (H : list loc) : historyUR :=
    ( (histList H 1%Qp),  (histv H)).

  Definition full_history_auth (H : list loc) : historyUR :=
    ( (histList H 1%Qp),  (histv H)).

  Definition hist_snapshot H : historyUR :=
    ( None,  histv H).

  Global Instance snapshot_persistent H γ_h : Persistent (own γ_h (hist_snapshot H)).
  Proof.
    apply own_core_persistent. rewrite /CoreId. done.
  Qed.

  (** Updating and synchronizing history RAs *)

  Lemma sync_histories H1 H2 γ_h :
    own γ_h (half_history_frag H1) - own γ_h (half_history_frag H2) - H1 = H2.
  Proof.
    iIntros "H1 H2". iCombine "H1" "H2" as "H". iPoseProof (own_valid with "H") as "H".
    iDestruct "H" as %H. iPureIntro. destruct H as [[_ Hl1%agree_op_inv] _].
    by apply to_agree_inj, leibniz_equiv in Hl1.
  Qed.

  Lemma add_half_histories (H : list loc) γ_h :
    own γ_h (half_history_frag H) -
        own γ_h (half_history_frag H) -
        own γ_h (full_history_frag H).
  Proof.
    iIntros "H1 H2". iCombine "H1" "H2" as "H". done.
  Qed.

  Lemma update_history H H' l γ_h :
    own γ_h (full_history_auth H) -
        own γ_h (half_history_frag H) -
        own γ_h (half_history_frag H') ==
        own γ_h (full_history_auth (l :: H)) 
        own γ_h (half_history_frag (l :: H)) 
        own γ_h (half_history_frag (l :: H)).
  Proof.
    iIntros "H● H1◯ H2◯". iDestruct (sync_histories with "H1◯ H2◯") as %<-.
    iDestruct (add_half_histories with "H1◯ H2◯") as "H◯".
    iCombine "H● H◯" as "H". rewrite -own_op -own_op.
    iApply (own_update with "H"). apply prod_update.
    - apply auth_update, option_local_update. rewrite pair_op frac_op' agree_idemp.
      rewrite Qp_div_2. apply exclusive_local_update. by constructor.
    - apply auth_update. simpl. rewrite hist_op_l; last done.
        by apply hist_local_update, suffix_cons_r.
  Qed.

  Lemma sync_snapshot H1 H2 H2' γ_h :
    own γ_h (full_history_auth H1) - own γ_h ( H2',  histv H2) - H2 `suffix_of` H1.
  Proof.
    iIntros "H● H◯". iCombine "H●" "H◯" as "H".
      by iDestruct (own_valid with "H") as %[_ [Hs%hist_included _]%auth_both_valid].
  Qed.

  Lemma extract_snapshot H γ_h :
     own γ_h (half_history_frag H) -  own γ_h (hist_snapshot H).
   Proof.
     iIntros "H".
     iAssert (own γ_h (half_history_frag H)  own γ_h (hist_snapshot H))%I with "[H]" as "[_ H2]".
     { rewrite -own_op pair_op.
       assert ( histList H (1 / 2)   None =  (histList H (1 / 2)  None)) as Heq by apply auth_frag_op.
       assert ( histv H   histv H =  (histv H  histv H)) as Heq' by apply auth_frag_op.
       rewrite Heq Heq' right_id. rewrite <- core_id_dup; first done. by rewrite /CoreId. }
     rewrite intuitionistically_into_persistently.
     by iApply persistent.
   Qed.

  Lemma sync_counter_values γ_n (n m : Z) :
    own γ_n ( Excl' n) - own γ_n ( Excl' m) - n = m.
  Proof.
    iIntros "H● H◯". iCombine "H●" "H◯" as "H". iDestruct (own_valid with "H") as "H".
      by iDestruct "H" as %[H%Excl_included%leibniz_equiv _]%auth_both_valid.
  Qed.


  (** Updating and synchronizing the counter and flag RAs *)

  Lemma sync_flag_values γ_n (b1 b2 : bool) :
    own γ_n ( Excl' b1) - own γ_n ( Excl' b2) - b1 = b2.
  Proof.
    iIntros "H● H◯". iCombine "H●" "H◯" as "H". iDestruct (own_valid with "H") as "H".
      by iDestruct "H" as %[H%Excl_included%leibniz_equiv _]%auth_both_valid.
  Qed.

  Lemma update_counter_value γ_n (n1 n2 m : Z) :
    own γ_n ( Excl' n1) - own γ_n ( Excl' n2) == own γ_n ( Excl' m)  own γ_n ( Excl' m).
  Proof.
    iIntros "H● H◯". iCombine "H●" "H◯" as "H". rewrite -own_op. iApply (own_update with "H").
    by apply auth_update, option_local_update, exclusive_local_update.
  Qed.

  Lemma update_flag_value γ_n (b1 b2 b : bool) :
    own γ_n ( Excl' b1) - own γ_n ( Excl' b2) == own γ_n ( Excl' b)  own γ_n ( Excl' b).
  Proof.
    iIntros "H● H◯". iCombine "H●" "H◯" as "H". rewrite -own_op. iApply (own_update with "H").
    by apply auth_update, option_local_update, exclusive_local_update.
  Qed.

  Definition counter_content (γs : gname * gname * gname) (c : bool * Z) :=
    (own γs.1.2 ( Excl' c.1)  own γs.2 ( Excl' c.2))%I.


  (** Definition of the invariant *)

  Fixpoint val_to_some_loc (vs : list (val * val)) : option loc :=
    match vs with
    | (#true , LitV (LitLoc l)) :: _  => Some l
    | _                         :: vs => val_to_some_loc vs
    | _                               => None
    end.

  Lemma val_to_some_loc_some vs l :
    val_to_some_loc vs = Some l 
     v1 v2 vs', vs = (v1, v2) :: vs' 
       ( (v1 = #true  v2 = LitV (LitLoc l))
        val_to_some_loc vs' = Some l).
  Proof.
    intros H. destruct vs as [|[v1 v2] vs']; first done.
    exists v1, v2, vs'. split; first done.
    destruct v1; try by right. destruct l0; try by right.
    destruct b; try by right. destruct v2; try by right.
    destruct l0; try by right. simpl in H. inversion H. by left.
  Qed.

  Inductive abstract_state : Set :=
  | injl : Z  abstract_state
  | injr : Z  proph_id  abstract_state.

  Definition own_token γ_t := (own γ_t token)%I.

  Definition used_up l γ_h :=
    ( H,  own γ_h (hist_snapshot H)  In l H  Some l  head H)%I.

  Definition not_done_state H l (γ_h : gname) :=
    (own γ_h (half_history_frag H)  Some l = head H)%I.

  Definition pending_state P (n : Z) vs l_ghost (γ_h γ_n : gname) :=
    (P  match val_to_some_loc vs with None => True | Some l => l = l_ghost end  own γ_n ( Excl' n))%I.

  Definition accepted_state Q vs (l l_ghost : loc) (γ_h : gname) :=
    (l_ghost {1/2} -  match val_to_some_loc vs with None => True | Some l => l = l_ghost  Q end)%I.

  Definition done_state Q (l l_ghost : loc) (γ_t γ_h  : gname) :=
    ((Q  own_token γ_t)  l_ghost  -  used_up l γ_h)%I.

  Definition state_inv P Q (p : proph_id) n l l_ghost H γ_h γ_n γ_t : iProp Σ :=
    ( vs, proph p vs 
      ((not_done_state H l γ_h 
        ( pending_state P n vs l_ghost γ_h γ_n
         accepted_state Q vs l l_ghost γ_h ))
       done_state Q l l_ghost γ_t γ_h))%I.

  Definition pau P Q γs :=
    ( P -  AU <<  (b : bool) (n : Z), counter_content γs (b, n) >> @ ∖↑N, 
                 << counter_content γs (b, (if b then n + 1 else n)), COMM Q >>)%I.

  Definition counter_inv γ_h γ_b γ_n f c :=
    ( (b : bool) (l : loc) (H : list loc) (q : Qp) (v : val),
       f  #b  c  #l  l {q} v 
       own γ_h (full_history_auth H) 
       own γ_h (half_history_frag H) 
       ([ list] l  H,  q, l {q} -) 
       Some l = head H  NoDup H 
       own γ_b ( Excl' b) 
       (( (n : Z), v = InjLV #n  own γ_h (half_history_frag H)  own γ_n ( Excl' n)) 
        ( (n : Z) (p : proph_id), v = InjRV(#n,#p) 
          P Q l_ghost γ_t, inv stateN (state_inv P Q p n l l_ghost H γ_h γ_n γ_t) 
                     pau P Q (γ_h, γ_b, γ_n))))%I.

  Definition is_counter (γs : gname * gname * gname) (ctr : val) :=
    ( (γ_h γ_b γ_n : gname) (f c : loc),
        ⌜γs = (γ_h, γ_b, γ_n)  ctr = (#f, #c)%V 
        inv counterN (counter_inv γ_h γ_b γ_n f c))%I.

  Global Instance is_counter_persistent γs ctr : Persistent (is_counter γs ctr) := _.

  Global Instance counter_content_timeless γs ctr : Timeless (counter_content γs ctr) := _.

  Global Instance abstract_state_inhabited: Inhabited abstract_state := populate (injl 0).


  (** A few more helper lemmas that will come up later *)

  Lemma mapsto_valid_3 l v1 v2 q :
    l  v1 - l {q} v2 - False.
  Proof.
    iIntros "Hl1 Hl2". iDestruct (mapsto_valid_2 with "Hl1 Hl2") as %Hv.
    apply (iffLR (frac_valid' _)) in Hv. by apply Qp_not_plus_q_ge_1 in Hv.
  Qed.

  Instance in_dec (l : loc) H: Decision (In l H).
  Proof.
    induction H as [|a H IH].
    - right. naive_solver.
    - destruct (decide (l = a)).
      + left. naive_solver.
      + destruct IH; [ left | right]; naive_solver.
  Qed.

  Lemma nodup_fresh_loc l v H:
    NoDup H  l  v - ([ list] l  H,  q, l {q} -) - NoDup (l :: H).
  Proof.
    intros Hd. iIntros "Hl Hls".
    destruct (decide (In l H)) as [(x1 & x2 & ->)%in_split | Hn%NoDup_cons]; last done.
    - destruct x1 as [|x1 x1s];
        [ rewrite app_nil_l in Hd; rewrite app_nil_l; iDestruct "Hls" as "[Hl' _]" |
          iDestruct "Hls" as "[_ [Hl' _]]" ];
        iDestruct "Hl'" as (q v') "Hl'";
        by iDestruct (mapsto_valid_3 with "Hl Hl'") as %?.
    - by iPureIntro.
  Qed.


  (** ** Proof of [complete] *)

  (** The part of [complete] for the succeeding thread that moves from [pending] to [accepted] state *)

  Lemma complete_succeeding_thread_pending γ_h γ_b γ_n γ_t f_l c_l P Q p (m n : Z) l l_ghost l_new H Φ :
    Some l = head H 
    inv counterN (counter_inv γ_h γ_b γ_n f_l c_l) -
    inv stateN (state_inv P Q p m l l_ghost H γ_h γ_n γ_t) -
    pau P Q (γ_h, γ_b, γ_n) -
    l_ghost {1 / 2} #() -
    ((own_token γ_t ={}=  Q) - Φ #()) -
    own γ_n ( Excl' n) -
    l_new  InjLV #n -
    WP Resolve (CAS #c_l #l #l_new) #p #l_ghost ;; #() {{ v, Φ v }}.
  Proof.
    iIntros (Heq) "#InvC #InvS PAU Hl_ghost HQ Hn● Hl_new". wp_bind (Resolve _ _ _)%E.
    iInv counterN as (b' l' H' q v) "[>Hf [>Hc [>Hl' [>H● [>H◯ [>HlH [>Heq [Hb● Hrest]]]]]]]]".
    iDestruct "Heq" as %[Heq'' Hd']. simpl.
    iDestruct ((nodup_fresh_loc _ _ _ Hd') with "Hl_new HlH") as %Hd''.
    (* It must be that l' = l because we are in the succeeding thread. *)
    destruct (decide (l' = l)) as [->|HNeq]; last first. {
      iInv stateN as (vs') "[>Hp' [[>[Hh◯ _] State] | Done]]".
      - iDestruct "State" as "[Pending | Accepted]".
        + iDestruct "Pending" as "[_ >[_ Hn●']]".
          iCombine "Hn●'" "Hn●" as "Contra".
          iDestruct (own_valid with "Contra") as %Contra. by inversion Contra.
        + iDestruct (sync_histories with "Hh◯ H◯") as %->.
          rewrite <- Heq'' in Heq. by inversion Heq.
      - iDestruct "Done" as "[_ >[Hlghost _]]".
        wp_apply (wp_resolve with "Hp'"); first done. wp_cas_fail.
        iDestruct "Hlghost" as (?) "Hlghost".
        by iDestruct (mapsto_valid_2 with "Hlghost Hl_ghost") as %?.
    }
    (* To apply the CAS, we need the prophecy variable, so we open the state invariant. *)
    iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] State] | Done]]".
      - iDestruct "State" as "[Pending | Accepted]".
        + (* Pending: contradiction. *)
          iDestruct "Pending" as "[_ >[_ Hn●']]".
          iCombine "Hn●" "Hn●'" as "Contra".
          iDestruct (own_valid with "Contra") as %Contra. by inversion Contra.
        + (* We perform the CAS. *)
          iDestruct (sync_histories with "H◯ Hh◯") as %->.
          wp_apply (wp_resolve with "Hp'"); first done; wp_cas_suc.
          destruct (val_to_some_loc vs') eqn:Hvtsl; last first. {
            (* Wrong prophecy: contradiction. *)
            iIntros (vs ->). inversion Hvtsl.
          }
          (* Update to Done. *)
          iDestruct "Accepted" as "[Hl_ghost_inv H]".
          rewrite Hvtsl. iDestruct "H" as "[HEq Q]".
          (* The first element of H is l. *)
          destruct H as [|l' H]; inversion Heq; subst l'.
          (* And we have l ≠ l_new. *)
          destruct (decide (l = l_new)) as [->|HNeq]. {
            iDestruct "HlH" as "[Hl HlH]". iDestruct "Hl" as (q' v') "Hl".
            by iDestruct (mapsto_valid_3 with "Hl_new Hl") as %Contra.
          }
          (* Update histories. *)
          iDestruct (update_history _ _ l_new with "H● H◯ Hh◯") as ">[Hh● [H◯ H◯']]".
          iIntros (pv' ->) "Hp". iModIntro.
          (* Extract snapshot to prove used_up. *)
          iDestruct (extract_snapshot with "H◯'") as "#Hs".
          iSplitL "Hl_ghost_inv Hl_ghost Q Hp".
          (* Update state to Done. *)
          { iNext. iExists _. iSplitL "Hp"; first done. repeat iRight.
            iDestruct "Hl_ghost_inv" as (v'') "Hl_ghost''".
            iDestruct (mapsto_agree with "Hl_ghost Hl_ghost''") as %<-.
            iCombine "Hl_ghost" "Hl_ghost''" as "Hl_ghost'".
            iSplitL "Q"; first by iFrame. iSplitL "Hl_ghost'"; first by eauto.
            iExists (l_new :: l :: H). iSplit; first done. iPureIntro.
            split; first by apply in_cons, in_eq. by intros [=->]. }
          iModIntro. iSplitR "HQ".
          { iNext. iExists _, _, _, _, _. iSplitL "Hf"; first done.
            iSplitL "Hc"; first done. iDestruct "Hl_new" as "[$ Hl_new]".
            iSplitL "Hh●"; first done. iSplitL "H◯'"; first done.
            iSplitL "HlH Hl_new". { iSplitL "Hl_new"; first by iExists _, _. iFrame. }
            iSplit; first done. iSplitL "Hb●"; first done. iLeft. iExists n. by iFrame. }
          iApply wp_fupd. wp_seq. iApply "HQ". iModIntro. iIntros "Ht".
          iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] _] | Done]]".
          * iInv counterN as (b5 l5 H5 q5 v5) "[>Hf [>Hc [>Hl [>H● [>H◯ _]]]]]".
            iDestruct (sync_histories with "H◯ Hh◯") as %->.
            by iDestruct (sync_snapshot with "H● Hs") as %?%suffix_cons_not.
          * iDestruct "Done" as "[QT [>Hlghost Usedup]]".
            iModIntro. iDestruct (later_intro with "Ht") as "Ht".
            iDestruct (later_or with "QT") as "[Q | T]"; last first.
            { iCombine "Ht" "T" as "Contra". iDestruct (own_valid with "Contra") as "#Contra'".
              iSplitL; try iModIntro; try iNext; iDestruct "Contra'" as %Contra;
              by inversion Contra. }
            iSplitR "Q"; last done. iNext. iExists _. iSplitL "Hp'"; first done.
            repeat iRight. iFrame.
      - (* Done: contradiction. *)
        iDestruct "Done" as "[QT [>Hlghost Usedup]]".
        iDestruct "Hlghost" as (v') "Hlghost".
        by iDestruct (mapsto_valid_2 with "Hl_ghost Hlghost") as %?.
  Qed.

  (** The part of [complete] for the failing thread *)

  Lemma complete_failing_thread γ_h γ_b γ_n γ_t f_l c_l l1 l H1 H P Q p m n l_ghost_inv l_ghost l_new Φ :
    Some l1 = head H1 
    In l H1 
    l_ghost_inv  l_ghost 
    inv counterN (counter_inv γ_h γ_b γ_n f_l c_l) -
    inv stateN (state_inv P Q p m l l_ghost_inv H γ_h γ_n γ_t) -
    pau P Q (γ_h, γ_b, γ_n) -
     own γ_h (hist_snapshot H1) -
    ((own_token γ_t ={}=  Q) - Φ #()) -
    l_new  InjLV #n -
    WP Resolve (CAS #c_l #l #l_new) #p #l_ghost ;; #() {{ v, Φ v }}.
  Proof.
    iIntros (Heq Hin Hnl) "#InvC #InvS PAU #Hs1 HQ Hl_new". wp_bind (Resolve _ _ _)%E.
    iInv counterN as (b l' H' q v) "[>Hf [>Hc [>Hl [>H● [>H◯ [HlH [>Heq [Hb● Hrest]]]]]]]]".
    iDestruct (extract_snapshot with "H◯") as "#Hs2".
    iDestruct (sync_snapshot with "H● Hs1") as %H12.
    (* It must be that l' = l because we are in the succeeding thread. *)
    destruct (decide (l' = l)) as [->|Hn]. {
      iInv stateN as (vs') "[>Hp' [[>[Hh◯ _] State] | Done]]".
      - wp_apply (wp_resolve with "Hp'"); first done; wp_cas_suc. iIntros (vs ->).
        iDestruct "State" as "[Pending | Accepted]".
        + iDestruct "Pending" as "[_ [Hvs _]]". iDestruct "Hvs" as %Hvs. by inversion Hvs.
        + iDestruct "Accepted" as "[_ [Hvs _]]". iDestruct "Hvs" as %Hvs. by inversion Hvs.
      - iDestruct "Done" as "[QT [>Hlghost Usedup]]".
        iDestruct "Usedup" as (H'') "[Hs >Usedup]".
        iDestruct "Usedup" as %[Hin' Hn].
        iDestruct "Heq" as %[Heq' Hd'].
        iMod (intuitionistically_elim with "Hs") as "Hs".
        iDestruct (sync_snapshot with "H● Hs") as %Hs'.
        destruct Hs' as [xs ->]. destruct (in_split _ _ Hin) as (x & y & ->).
        destruct xs as [|z zs]; first done.
        simpl in *. inversion Heq'; subst. destruct (in_split _ _ Hin') as (x1 & x2 & ->).
        rewrite app_comm_cons in Hd'. rewrite app_assoc in Hd'.
        apply (NoDup_remove _ _ _) in Hd' as [_ Contra].
        rewrite <- app_comm_cons in Contra. simpl in *. exfalso. eauto.
    }
    (* The CAS fails. *)
    iInv stateN as (vs') "[>Hp' State]".
    wp_apply (wp_resolve with "Hp'"); first done. wp_cas_fail.
    iDestruct (extract_snapshot with "H◯") as "#Hs".
    iIntros (vs ->) "Hp". iModIntro. iDestruct "Heq" as %[Heq' Hd'].
    iSplitL "State Hp". { iNext. iExists vs. iFrame. } iModIntro.
    iSplitL "Hf Hc Hl H● H◯ HlH Hb● Hrest". { iNext. iExists _, _, _, _. eauto with iFrame. }
    wp_seq. iApply "HQ". iIntros "Ht".
    iInv counterN as (b3 l3 H3 q3 v3) "[>Hf [>Hc [>Hl [>H● [>H◯ [HlH [>Heq [Hb● Hrest]]]]]]]]".
    iDestruct "Heq" as %[Heq'' Hd''].
    iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] _] | Done]]".
    - iDestruct (sync_histories with "H◯ Hh◯") as %->.
      iDestruct (sync_snapshot with "H● Hs") as %Hs.
      iDestruct "Heq'" as %Heq'''. rewrite <- Heq'' in Heq'''.
      inversion Heq'''. subst. exfalso.
      by eapply (nodup_suffix_contradiction _ _ _ _ _ _ Heq Heq' Heq'').
    - iDestruct "Done" as "[[Q | >T] Hrest']"; iModIntro.
      + iSplitL "Ht Hp' Hrest'".
        { iNext. iExists _. iSplitL "Hp'"; first done. repeat iRight. iFrame. }
        iModIntro. iSplitR "Q"; last done. iNext. iExists _, _, _, _. eauto with iFrame.
      + iCombine "T" "Ht" as "Contra".
        iDestruct (own_valid with "Contra") as %Contra. by inversion Contra.
  Qed.

  (** ** Proof of [complete] *)

  Lemma complete_spec (c f l : loc) H (n : Z) (p : proph_id) γs γ_t l_ghost_inv P Q :
    is_counter γs (#f, #c) -
    inv stateN (state_inv P Q p n l l_ghost_inv H γs.1.1 γs.2 γ_t) -
     pau P Q γs -
    {{{ True }}}
       complete #c #f #l #n #p
    {{{ RET #(); own_token γ_t ={}= Q }}}.
  Proof.
    iIntros "#InvC #InvS #PAU". destruct γs as [[γ_h γ_b] γ_n].
    iDestruct "InvC" as (??? f_l c_l [[=<-<-<-][=->->]]) "#InvC".
    iModIntro. iIntros (Φ) "_ HQ". wp_lam. wp_pures.
    wp_alloc l_ghost as "[Hl_ghost' Hl_ghost'2]". wp_bind (! _)%E. simpl.
    (* open outer invariant to read `f` *)
    iInv counterN as (b1 l1 H1 q1 v1) "[>Hf [>Hc [>Hl [>H● [>H◯ [Hlh1 [>Heq [Hb● Hrest]]]]]]]]".
    iDestruct "Heq" as %[Heq Hd]. wp_load.
    (* two different proofs depending on whether we are succeeding thread *)
    destruct (decide (l_ghost_inv = l_ghost)) as [-> | Hnl].
    - (* we are the succeeding thread *)
      (* we need to move from pending to accepted. *)
      iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq] [Pending | Accepted]] | Done]]".
      + (* Pending: update to accepted *)
        iDestruct "Pending" as "[P >[Hvs Hn●]]". iDestruct "Heq" as %Heq'.
        iDestruct ("PAU" with "P") as ">AU".
        (* open AU, sync flag and counter *)
        iMod "AU" as (b2 n2) "[CC [_ Hclose]]".
        iDestruct "CC" as "[Hb◯ Hn◯]". simpl.
        iDestruct (sync_flag_values with "Hb● Hb◯") as %->.
        iDestruct (sync_counter_values with "Hn● Hn◯") as %->.
        iDestruct (sync_histories with "H◯ Hh◯") as %->.
        rewrite <- Heq in Heq'. inversion_clear Heq'; subst.
        iMod (update_counter_value _ _ _ (if b2 then n2 + 1 else n2) with "Hn● Hn◯")
          as "[Hn● Hn◯]".
        iMod ("Hclose" with "[Hn◯ Hb◯]") as "Q"; first by iFrame.
        (* close state inv *)
        iModIntro. iSplitL "Q H◯ Hl_ghost' Hp' Hvs".
        { iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
          iSplitL "H◯"; first by iFrame. iRight. iSplitL "Hl_ghost'"; first by iExists _.
          destruct (val_to_some_loc vs') eqn:Hvts; iFrame. }
        (* close outer inv *)
        iModIntro. iSplitR "Hl_ghost'2 HQ Hn●".
        { iNext. iExists _, _, _, _, _. iFrame. done. }
        destruct b2; wp_if; [ wp_op | .. ]; wp_alloc l_new as "Hl_new"; wp_pures;
          iApply ((complete_succeeding_thread_pending _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Heq)
                    with "InvC InvS PAU Hl_ghost'2 HQ Hn● Hl_new").
      + (* Accepted: contradiction *)
        iDestruct "Accepted" as "[>Hl_ghost_inv _]".
        iDestruct "Hl_ghost_inv" as (v) "Hlghost".
        iCombine "Hl_ghost'" "Hl_ghost'2" as "Hl_ghost'".
        by iDestruct (mapsto_valid_2 with "Hlghost Hl_ghost'") as %?.
      + (* Done: contradiction *)
        iDestruct "Done" as "[QT >[Hlghost _]]".
        iDestruct "Hlghost" as (v) "Hlghost".
        iCombine "Hl_ghost'" "Hl_ghost'2" as "Hl_ghost'".
        by iDestruct (mapsto_valid_2 with "Hlghost Hl_ghost'") as %?.
    - (* we are the failing thread *)
      (* extract history and assert that it contains l *)
      iDestruct (extract_snapshot with "H◯") as "#Hs1".
      iAssert (|={  counterN}=> (In l H1  own γ_h (full_history_auth H1)))%I with "[H●]" as "Hin". {
        iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] State] | Done]]".
        - iDestruct (sync_snapshot with "H● Hh◯") as %Hs1. iDestruct "Heq'" as %Heq'.
          iModIntro. iSplitR "H●".
          { iNext. iExists _. iSplitL "Hp'"; first done. iLeft. iFrame. done. }
          iModIntro. iFrame. iPureIntro. by eapply suffix_in_head.
        - iDestruct "Done" as "[QT [>Hlghost Usedup]]".
          iDestruct "Usedup" as (H') "[Hs >Usedup]". iDestruct "Usedup" as %[Hin Hn].
          iMod (intuitionistically_elim with "Hs") as "Hs".
          iDestruct (sync_snapshot with "H● Hs") as %Hs'.
          iModIntro. iSplitR "H●".
          { iNext. iExists _. iSplitL "Hp'"; first done. repeat iRight. iFrame.
            iExists _. iSplit; last by iPureIntro. iDestruct "Hs" as "#Hs". iModIntro.
            iApply "Hs". }
          iModIntro. iSplit; last done.
          iPureIntro. by eapply suffix_in.
      }
      (* close invariant *)
      iMod "Hin" as (Hin) "H●". iModIntro.
      iSplitL "Hf Hc H● H◯ Hb● Hrest Hl Hlh1". { iNext. iExists _, _, _, _. eauto with iFrame. }
      (* two equal proofs depending on value of b1 *)
      destruct b1; wp_if; [ wp_op | ..]; wp_alloc Hl_new as "Hl_new"; wp_pures;
        iApply ((complete_failing_thread _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Heq Hin Hnl)
                  with "InvC InvS PAU Hs1 HQ Hl_new").
  Qed.

  (** ** Proof of [cinc] *)

  Lemma cinc_spec c f γs :
    is_counter γs (f, c) -
    <<<  (b : bool) (n : Z), counter_content γs (b, n) >>>
        cinc (f, c)%V @∖↑N
    <<< counter_content γs (b, if b then n + 1 else n), RET #() >>>.
  Proof.
    iIntros "#InvC". iDestruct "InvC" as (γ_h γ_b γ_n f_l c_l) "[Heq InvC]".
    iDestruct "Heq" as %[-> [=->->]]. iIntros (Φ) "AU". iLöb as "IH".
    wp_lam. wp_proj. wp_let. wp_proj. wp_let. wp_bind (!_)%E.
    iInv counterN as (b' l' H' q v) "[>Hf [>Hc [>[Hl Hl'] [>H● [>H◯ [Hlh [>Heq [>Hb● Hv]]]]]]]]".
    wp_load. simpl. iDestruct "Hv" as "[Hv|Hv]".
    - iDestruct "Hv" as (n) "[% Hv]"; subst v.
      iModIntro. iSplitR "Hl' AU".
      { iModIntro. iExists _, _, _, (q/2)%Qp, (InjLV #n). eauto with iFrame. }
      wp_let. wp_load. wp_match. wp_apply wp_new_proph; first done.
      iIntros (l_ghost p') "Hp'".
      wp_let. wp_alloc ly as "Hly". wp_let. wp_bind (CAS _ _ _)%E.
      (* open outer invariant to read c_l *)
      iInv counterN as (b l'' H'' q' v') "[>Hf [>Hc [>Hl'2 [>H● [>H◯ [>Hlh [>Heq [Hb● Hrest]]]]]]]]".
      iDestruct "Heq" as %[Heq Hd].
      (* assert that ly is not in the history *)
      iDestruct (extract_snapshot with "H◯") as "#Hs".
      iDestruct ((nodup_fresh_loc _ _ _ Hd) with "Hly Hlh") as %Hd'.
      destruct (decide (l' = l'')) as [<- | Hn].
      + (* CAS succeeds *)
        wp_cas_suc.
        (* We need to update the half history with `ly`.
           For that we will need to get the second half of the history *)
        iDestruct "Hrest" as "[InjL | InjR]";
          iPoseProof (mapsto_agree with "Hl' Hl'2") as "#Heq"; last first.
        { (* injR: contradiction *)
          iDestruct "InjR" as (??) "[Heq' InjR_rest]".
          iDestruct "Heq'" as %->. iDestruct "Heq" as %Heq'. inversion Heq'. }
        (* injL: update history *)
        iDestruct "InjL" as (n'') "[Heq' [H◯' Hn●]]".
        iDestruct "Heq'" as %->. simpl. iDestruct "Heq" as %[=<-].
        iPoseProof ((update_history _ _ ly) with "H● H◯ H◯'") as ">[H● [H◯' H◯'']]".
        iDestruct (laterable with "AU") as (AU_later) "[AU #AU_back]".
        iDestruct (own_alloc token) as ">Ht"; first by apply auth_auth_valid.
        iDestruct "Ht" as (γ_t) "Token".
        destruct (val_to_some_loc l_ghost) eqn:H.
        * destruct (val_to_some_loc_some l_ghost l H) as [v1 [v2 [vs' [-> HCases]]]].
          destruct HCases as [[-> ->] | Hl].
          ++ iMod (inv_alloc stateN _ (state_inv AU_later _ _ _ _ _ _ _ _ γ_t)
               with "[AU H◯' Hp' Hn●]") as "#Hinv".
             { iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
               iSplitL "H◯'"; first by iFrame. iLeft. by iFrame. }
             iModIntro. iDestruct "Hly" as "[Hly1 Hly2]". iSplitR "Hl' Token". {
               (* close invariant *)
               iNext. iExists _, ly, _, _, _. iFrame.
               iSplitL "Hly1"; first by eauto. iSplit; first by iPureIntro.
               iRight. iExists _, _. iSplit; first done. iExists _, _, _, _. iSplit; done.
             }
             wp_if.
             wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
             iIntros "Ht". iMod ("Ht" with "Token") as "Φ". wp_seq. by wp_lam.
          ++ iMod (inv_alloc stateN _ (state_inv AU_later _ _ _ ly l _ _ _ γ_t)
               with "[AU H◯' Hp' Hn●]") as "#Hinv".
             { iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
               iSplitL "H◯'"; first by iFrame. iLeft. iFrame. by rewrite H. }
             iModIntro. iDestruct "Hly" as "[Hly1 Hly2]". iSplitR "Hl' Token". {
               (* close invariant *)
               iNext. iExists _, ly, _, _, _. iFrame.
               iSplitL "Hly1"; first by eauto. iSplit; first by iPureIntro.
               iRight. iExists _, _. iSplit; first done. iExists _, _, _, _. iSplit; done.
             }
             wp_if.
             wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
             iIntros "Ht". iMod ("Ht" with "Token") as "Φ". wp_seq. by wp_lam.
        * iMod (inv_alloc stateN _ (state_inv AU_later _ _ _ ly l' _ _ _ γ_t)
            with "[AU H◯' Hp' Hn●]") as "#Hinv".
          { iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
            iSplitL "H◯'"; first by iFrame. iLeft. iFrame. by rewrite H. }
          iModIntro. iDestruct "Hly" as "[Hly1 Hly2]". iSplitR "Hl' Token". {
            (* close invariant *)
            iNext. iExists _, ly, _, _, _. iFrame.
            iSplitL "Hly1"; first by eauto. iSplit; first by iPureIntro.
            iRight. iExists _, _. iSplit; first done. iExists _, _, _, _. iSplit; done.
          }
          wp_if.
          wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
          iIntros "Ht". iMod ("Ht" with "Token") as "Φ". wp_seq. by wp_lam.
      + (* CAS fails: closing invariant and invoking IH *)
        wp_cas_fail.
        iModIntro. iSplitR "Hl' AU".
        iModIntro. iExists _, _, _, _. eauto 10 with iFrame.
        wp_if. by iApply "IH".
    - (* l' ↦ injR *)
      iModIntro. iDestruct "Hv" as (n p) "[% Hrest]"; subst v.
      (* extract state invariant *)
      iDestruct "Hrest" as (P Q l_ghost γ_t) "[#InvS #P_AU]".
      iSplitR "Hl' AU".
      (* close invariant *)
      { iModIntro. iExists _, _, _, _, _. iFrame. iRight. eauto 10 with iFrame. }
      wp_let. wp_load. wp_match. repeat wp_proj.
      wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
      iIntros "_". wp_seq. by iApply "IH".
  Qed.

  Lemma new_counter_spec :
    {{{ True }}}
        new_counter #()
    {{{ ctr γs, RET ctr ; is_counter γs ctr  counter_content γs (true, 0) }}}.
  Proof.
    iIntros (Φ) "_ HΦ". wp_lam. wp_apply wp_fupd.
    wp_alloc l_n as "Hl_n". wp_alloc l_c as "Hl_c". wp_let.
    wp_alloc l_f as "Hl_f". wp_let. wp_pair.
    iMod (own_alloc (full_history_auth [l_n]  full_history_frag [l_n])) as (γ_h) "[Hh● Hh◯]".
    { rewrite pair_op. apply pair_valid. split; by apply auth_both_valid. }
    iMod (own_alloc ( Excl' true    Excl' true)) as (γ_b) "[Hb● Hb◯]".
    { by apply auth_both_valid. }
    iMod (own_alloc ( Excl' 0    Excl' 0)) as (γ_n) "[Hn● Hn◯]".
    { by apply auth_both_valid. }
    iMod (inv_alloc counterN _ (counter_inv γ_h γ_b γ_n l_f l_c)
      with "[Hl_f Hl_c Hl_n Hh● Hh◯ Hb● Hn●]") as "#InvC".
    { iNext. iDestruct "Hh◯" as "[Hh◯1 Hh◯2]". iDestruct "Hl_n" as "[Hl_n1 Hl_n2]".
      iExists true, l_n, [l_n], _, (InjLV #0). iFrame.
      iSplitL "Hl_n1". { simpl. iSplitL; last done. by iExists _, _. }
      iSplitR. { iPureIntro. split; first done. apply NoDup_cons. apply in_nil. apply NoDup_nil. }
      iLeft. iExists 0. iSplitR; first done. iFrame. }
    iModIntro.
    iApply ("HΦ" $! (#l_f, #l_c)%V (γ_h, γ_b, γ_n)).
    iSplitR; last by iFrame. iExists γ_h, γ_b, γ_n, l_f, l_c. iSplit; done.
  Qed.

  Lemma set_flag_spec γs f c (new_b : bool) :
    is_counter γs (f, c) -
    <<<  (b : bool) (n : Z), counter_content γs (b, n) >>>
        set_flag (f, c)%V #new_b @∖↑N
    <<< counter_content γs (new_b, n), RET #() >>>.
  Proof.
    iIntros "#InvC" (Φ) "AU". wp_lam. wp_let. wp_proj.
    iDestruct "InvC" as (γ_h γ_b γ_n l_f l_c) "[[HEq1 HEq2] InvC]".
    iDestruct "HEq1" as %->. iDestruct "HEq2" as %HEq. inversion HEq; subst; clear HEq.
    iInv counterN as (b c H q v) "[>Hl_f [>Hl_c [>Hl [>H● [>H◯ [>HlH [>HEq [Hb● H]]]]]]]]".
    iMod "AU" as (b' n') "[[Hb◯ Hn◯] [_ Hclose]]"; simpl.
    wp_store.
    iDestruct (sync_flag_values with "Hb● Hb◯") as %HEq; subst b.
    iDestruct (update_flag_value with "Hb● Hb◯") as ">[Hb● Hb◯]".
    iMod ("Hclose" with "[Hn◯ Hb◯]") as "HΦ"; first by iFrame.
    iModIntro. iModIntro. iSplitR "HΦ"; last done.
    iNext. iExists new_b, c, H, q, v. iFrame.
  Qed.

  Lemma get_spec γs f c :
    is_counter γs (f, c) -
    <<<  (b : bool) (n : Z), counter_content γs (b, n) >>>
        get (f, c)%V @∖↑N
    <<< counter_content γs (b, n), RET #n >>>.
  Proof.
    iIntros "#InvC" (Φ) "AU". iLöb as "IH". wp_lam. repeat (wp_proj; wp_let). wp_bind (! _)%E.
    iDestruct "InvC" as (γ_h γ_b γ_n l_f l_c) "[[HEq1 HEq2] InvC]".
    iDestruct "HEq1" as %->. iDestruct "HEq2" as %HEq. inversion HEq; subst.
    iInv counterN as (b c H q v) "[>Hl_f [>Hl_c [>[Hc Hc'] [>H● [>H◯ [>HlH [>HEq [Hb● [H|H]]]]]]]]]".
    - wp_load. iDestruct "H" as (n) "[% [H◯2 Hn●]]". simpl in *; subst v.
      iMod "AU" as (au_b au_n) "[[Hb◯ Hn◯] [_ Hclose]]"; simpl.
      iDestruct (sync_counter_values with "Hn● Hn◯") as %->.
      iMod ("Hclose" with "[Hn◯ Hb◯]") as "HΦ"; first by iFrame.
      iModIntro. iSplitR "HΦ Hc'". {
        iNext. iExists b, c, H, (q/2)%Qp, (InjLV #au_n). iFrame.
        iLeft. iExists au_n. iFrame. done.
      }
      wp_let. wp_load. wp_match. iApply "HΦ".
    - wp_load. iDestruct "H" as (n p) "[% H]". simpl in *; subst v.
      iDestruct "H" as (P Q l_ghost γ_t) "[#InvS #PAU]".
      iModIntro. iSplitR "AU Hc'". {
        iNext. iExists b, c, H, (q/2)%Qp, (InjRV(#n,#p)). iFrame.
        iRight. iExists n, p. iSplit; first done. iExists P, Q, l_ghost, γ_t. eauto.
      }
      wp_let. wp_load. wp_match. repeat wp_proj. wp_bind (complete _ _ _ _ _)%E.
      wp_apply complete_spec; [ iExists _, _, _, _, _; eauto | done | done | done | .. ].
      iIntros "Ht". wp_seq. iApply "IH". iApply "AU".
  Qed.

End conditional_counter.