concurrent_runners.v 16.6 KB
Newer Older
Dan Frumin's avatar
Dan Frumin committed
1 2 3 4 5 6
(** Concurrent Runner example from
    "Modular Reasoning about Separation of Concurrent Data Structures"
    <http://www.kasv.dk/articles/hocap-ext.pdf>
*)
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import cmra agree frac csum excl.
7
From iris.heap_lang.lib Require Import assert.
Dan Frumin's avatar
Dan Frumin committed
8
From iris.base_logic.lib Require Import fractional.
9
From iris_examples.hocap Require Export abstract_bag shared_bag lib.oneshot.
Dan Frumin's avatar
Dan Frumin committed
10 11
Set Default Proof Using "Type".

12 13 14 15 16
(** RA describing the evolution of a task *)
(** INIT = task has been initiated
    SET_RES v = the result of the task has been computed and it is v
    FIN v = the task has been completed with the result v *)
(* We use this RA to verify the Task.run() method *)
Dan Frumin's avatar
Dan Frumin committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Definition saR := csumR fracR (csumR (prodR fracR (agreeR valC)) (agreeR valC)).
Class saG Σ := { sa_inG :> inG Σ saR }.
Definition INIT `{saG Σ} γ (q: Qp) := own γ (Cinl q%Qp).
Definition SET_RES `{saG Σ} γ (q: Qp) (v: val) := own γ (Cinr (Cinl (q%Qp, to_agree v))).
Definition FIN `{saG Σ} γ (v: val) := own γ (Cinr (Cinr (to_agree v))).
Global Instance INIT_fractional `{saG Σ} γ : Fractional (INIT γ)%I.
Proof.
  intros p q. rewrite /INIT.
  rewrite -own_op. f_equiv.
Qed.
Global Instance INIT_as_fractional `{saG Σ} γ q:
  AsFractional (INIT γ q) (INIT γ)%I q.
Proof.
  split; [done | apply _].
Qed.
Global Instance SET_RES_fractional `{saG Σ} γ v : Fractional (fun q => SET_RES γ q v)%I.
Proof.
  intros p q. rewrite /SET_RES.
35
  rewrite -own_op Cinr_op Cinl_op pair_op agree_idemp. f_equiv.
Dan Frumin's avatar
Dan Frumin committed
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
Qed.
Global Instance SET_RES_as_fractional `{saG Σ} γ q v:
  AsFractional (SET_RES γ q v) (fun q => SET_RES γ q v)%I q.
Proof.
  split; [done | apply _].
Qed.

Lemma new_INIT `{saG Σ} : (|==>  γ, INIT γ 1%Qp)%I.
Proof. by apply own_alloc. Qed.
Lemma INIT_not_SET_RES `{saG Σ} γ q q' v :
  (INIT γ q - SET_RES γ q' v - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma INIT_not_FIN `{saG Σ} γ q v :
  (INIT γ q - FIN γ v - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma SET_RES_not_FIN `{saG Σ} γ q v v' :
  (SET_RES γ q v - FIN γ v' - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma SET_RES_agree `{saG Σ} (γ: gname) (q q': Qp) (v w: val) :
  SET_RES γ q v - SET_RES γ q' w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. rewrite Cinr_op Cinl_op pair_op in Hfoo.
  by destruct Hfoo as [_ ?%agree_op_invL'].
Qed.
Lemma FIN_agree `{saG Σ} (γ: gname) (v w: val) :
  FIN γ v - FIN γ w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. rewrite Cinr_op Cinr_op in Hfoo.
  by apply agree_op_invL'.
Qed.
Lemma INIT_SET_RES `{saG Σ} (v: val) γ :
  INIT γ 1%Qp == SET_RES γ 1%Qp v.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.
Lemma SET_RES_FIN `{saG Σ} (v w: val) γ :
  SET_RES γ 1%Qp v == FIN γ w.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.

Section contents.
  Context `{heapG Σ, !oneshotG Σ, !saG Σ}.
  Variable b : bag Σ.
  Variable N : namespace.

  (* new Task : Runner<A,B> -> A -> Task<A,B> *)
  Definition newTask : val := λ: "r" "a", ("r", "a", ref #0, ref NONEV).
  (* task_runner == Fst Fst Fst *)
  (* task_arg    == Snd Fst Fst *)
  (* task_state  == Snd Fst *)
  (* task_res    == Snd *)
  (* Task.Run : Task<A,B> -> () *)
  Definition task_Run : val := λ: "t",
    let: "runner" := Fst (Fst (Fst "t")) in
    let: "arg"    := Snd (Fst (Fst "t")) in
    let: "state"  := Snd (Fst "t") in
    let: "res"    := Snd "t" in
    let: "tmp" := (Fst "runner") "runner" "arg"
                  (* runner.body(runner,arg)*) in
    "res" <- (SOME "tmp");;
    "state" <- #1.

  (* Task.Join : Task<A,B> -> B *)
  Definition task_Join : val := rec: "join" "t" :=
    let: "runner" := Fst (Fst (Fst "t")) in
    let: "arg"    := Snd (Fst (Fst "t")) in
    let: "state"  := Snd (Fst "t") in
    let: "res"    := Snd "t" in
120 121 122 123 124 125
    if: (!"state" = #1)
    then match: !"res" with
           NONE => assert #false
         | SOME "v" => "v"
         end
    else "join" "t".
Dan Frumin's avatar
Dan Frumin committed
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

  (* runner_body == Fst *)
  (* runner_bag  == Snd *)

  (* Runner.Fork : Runner<A,B> -> A -> Task<A,B> *)
  Definition runner_Fork : val := λ: "r" "a",
    let: "bag" := Snd "r" in
    let: "t" := newTask "r" "a" in
    pushBag b "bag" "t";;
    "t".

  (* Runner.runTask : Runner<A,B> -> () *)
  Definition runner_runTask : val := λ: "r",
    let: "bag" := Snd "r" in
    match: popBag b "bag" with
      NONE => #()
    | SOME "t" => task_Run "t"
    end.

  (* Runner.runTasks : Runner<A,B> -> () *)
  Definition runner_runTasks : val := rec: "runTasks" "r" :=
    runner_runTask "r";; "runTasks" "r".

  (* newRunner : (Runner<A,B> -> A -> B) -> nat -> Runner<A,B> *)
  Definition newRunner : val := λ: "body" "n",
    let: "bag" := newBag b #() in
    let: "r" := ("body", "bag") in
    let: "loop" :=
       (rec: "loop" "i" :=
          if: ("i" < "n")
          then Fork (runner_runTasks "r");; "loop" ("i"+#1)
          else "r"
       ) in
    "loop" #0.

  Definition task_inv (γ γ': gname) (state res: loc) (Q: val  iProp Σ) : iProp Σ :=
    ((state  #0  res  NONEV  pending γ (1/2)%Qp  INIT γ' (1/2)%Qp)
    ( v, state  #0  res  SOMEV v  pending γ (1/2)%Qp  SET_RES γ' (1/2)%Qp v)
    ( v, state  #1  res  SOMEV v  FIN γ' v  (Q v  pending γ (1/2)%Qp  shot γ v)))%I.
165
  Definition isTask (r: val) (γ γ': gname) (t: val) (P: val  iProp Σ) (Q: val  val  iProp Σ) : iProp Σ :=
Dan Frumin's avatar
Dan Frumin committed
166 167 168
    ( (arg : val) (state res : loc),
     t = (r, arg, #state, #res)%V
      P arg  INIT γ' (1/2)%Qp
169 170 171
      inv (N.@"task") (task_inv γ γ' state res (Q arg)))%I.
  Definition task (γ γ': gname) (t arg: val) (P: val  iProp Σ) (Q: val  val  iProp Σ) : iProp Σ :=
    ( (r: val) (state res : loc),
Dan Frumin's avatar
Dan Frumin committed
172 173
     t = (r, arg, #state, #res)%V
      pending γ (1/2)%Qp
174
      inv (N.@"task") (task_inv γ γ' state res (Q arg)))%I.
Dan Frumin's avatar
Dan Frumin committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

  Ltac auto_equiv :=
    (* Deal with "pointwise_relation" *)
    repeat lazymatch goal with
           | |- pointwise_relation _ _ _ _ => intros ?
           end;
    (* Normalize away equalities. *)
    repeat match goal with
           | H : _ {_} _ |-  _ => apply (discrete_iff _ _) in H
           | _ => progress simplify_eq
           end;
    (* repeatedly apply congruence lemmas and use the equalities in the hypotheses. *)
    try (f_equiv; fast_done || auto_equiv).

  Ltac solve_proper ::= solve_proper_core ltac:(fun _ => simpl; auto_equiv).

Dan Frumin's avatar
Dan Frumin committed
191
  Program Definition pre_runner (γ : name Σ b) (P: val  iProp Σ) (Q: val  val  iProp Σ) :
Dan Frumin's avatar
Dan Frumin committed
192 193 194
    (valC -n> iProp Σ) -n> (valC -n> iProp Σ) := λne R r,
    ( (body bag : val), r = (body, bag)%V
      bagS b (N.@"bag") (λ x y,  γ γ', isTask (body,x) γ γ' y P Q) γ bag
195
        r a: val,  (R r  P a - WP body r a {{ v, Q a v }}))%I.
Dan Frumin's avatar
Dan Frumin committed
196 197
  Solve Obligations with solve_proper.

Dan Frumin's avatar
Dan Frumin committed
198 199 200
  Global Instance pre_runner_contractive (γ : name Σ b) P Q :
    Contractive (pre_runner γ P Q).
  Proof. unfold pre_runner. solve_contractive. Qed.
Dan Frumin's avatar
Dan Frumin committed
201

Dan Frumin's avatar
Dan Frumin committed
202
  Definition runner (γ: name Σ b) (P: val  iProp Σ) (Q: val  val  iProp Σ) :
203
    valC -n> iProp Σ :=
Dan Frumin's avatar
Dan Frumin committed
204
    (fixpoint (pre_runner γ P Q))%I.
Dan Frumin's avatar
Dan Frumin committed
205

Dan Frumin's avatar
Dan Frumin committed
206 207
  Lemma runner_unfold γ r P Q :
    runner γ P Q r 
Dan Frumin's avatar
Dan Frumin committed
208 209
      ( (body bag : val), r = (body, bag)%V
        bagS b (N.@"bag") (λ x y,  γ γ', isTask (body,x) γ γ' y P Q) γ bag
Dan Frumin's avatar
Dan Frumin committed
210 211
          r a: val,  (runner γ P Q r  P a - WP body r a {{ v, Q a v }}))%I.
  Proof. rewrite /runner. by rewrite {1}fixpoint_unfold. Qed.
Dan Frumin's avatar
Dan Frumin committed
212

Dan Frumin's avatar
Dan Frumin committed
213 214 215
  Global Instance runner_persistent γ r P Q :
    Persistent (runner γ P Q r).
  Proof. rewrite /runner fixpoint_unfold. apply _. Qed.
Dan Frumin's avatar
Dan Frumin committed
216

217
  Lemma newTask_spec γb (r a : val) P (Q : val  val  iProp Σ) :
Dan Frumin's avatar
Dan Frumin committed
218
    {{{ runner γb P Q r  P a }}}
Dan Frumin's avatar
Dan Frumin committed
219
      newTask r a
220
    {{{ γ γ' t, RET t; isTask r γ γ' t P Q  task γ γ' t a P Q }}}.
Dan Frumin's avatar
Dan Frumin committed
221 222 223 224 225 226 227
  Proof.
    iIntros (Φ) "[#Hrunner HP] HΦ".
    unfold newTask. do 2 wp_rec. iApply wp_fupd.
    wp_alloc status as "Hstatus".
    wp_alloc res as "Hres".
    iMod (new_pending) as (γ) "[Htoken Htask]".
    iMod (new_INIT) as (γ') "[Hinit Hinit']".
228
    iMod (inv_alloc (N.@"task") _ (task_inv γ γ' status res (Q a))%I with "[-HP HΦ Htask Hinit]") as "#Hinv".
Dan Frumin's avatar
Dan Frumin committed
229 230
    { iNext. iLeft. iFrame. }
    iModIntro. iApply "HΦ".
231
    iFrame. iSplitL; iExists _,_,_; iFrame "Hinv"; eauto.
Dan Frumin's avatar
Dan Frumin committed
232 233
  Qed.

234 235
  Lemma task_Join_spec γb γ γ' (te : expr) (r t a : val) P Q
    `{!IntoVal te t}:
Dan Frumin's avatar
Dan Frumin committed
236
    {{{ runner γb P Q r  task γ γ' t a P Q }}}
237 238
       task_Join te
    {{{ res, RET res; Q a res }}}.
Dan Frumin's avatar
Dan Frumin committed
239 240
  Proof.
    iIntros (Φ) "[#Hrunner Htask] HΦ".
241
    rewrite -(of_to_val te t into_val).
Dan Frumin's avatar
Dan Frumin committed
242 243
    iLöb as "IH".
    rewrite {2}/task_Join.
244
    iDestruct "Htask" as (r' state res) "(% & Htoken & #Htask)". simplify_eq.
Dan Frumin's avatar
Dan Frumin committed
245
    repeat wp_pure _.
246
    wp_bind (! #state)%E. iInv (N.@"task") as "Hstatus" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
247
    rewrite {2}/task_inv.
248
    iDestruct "Hstatus" as "[>(Hstate & Hres)|[Hstatus|Hstatus]]".
Dan Frumin's avatar
Dan Frumin committed
249 250 251 252 253
    - wp_load.
      iMod ("Hcl" with "[Hstate Hres]") as "_".
      { iNext; iLeft; iFrame. }
      iModIntro. wp_op. wp_if.
      rewrite /task_Join. iApply ("IH" with "[$Htoken] HΦ").
254 255
      iExists _,_,_; iFrame "Htask"; eauto.
    - iDestruct "Hstatus" as (v) "(>Hstate & >Hres & HQ)".
Dan Frumin's avatar
Dan Frumin committed
256 257 258 259 260
      wp_load.
      iMod ("Hcl" with "[Hstate Hres HQ]") as "_".
      { iNext; iRight; iLeft. iExists _; iFrame. }
      iModIntro. wp_op. wp_if.
      rewrite /task_Join. iApply ("IH" with "[$Htoken] HΦ").
261 262
      iExists _,_,_; iFrame "Htask"; eauto.
    - iDestruct "Hstatus" as (v) "(>Hstate & >Hres & #HFIN & HQ)".
Dan Frumin's avatar
Dan Frumin committed
263 264 265 266 267 268 269 270 271 272
      wp_load.
      iDestruct "HQ" as "[[HQ Htoken2]|Hshot]"; last first.
      { iExFalso. iApply (shot_not_pending with "Hshot Htoken"). }
      iMod (shoot v γ with "[Htoken Htoken2]") as "#Hshot".
      { iApply (fractional_split_2 with "Htoken Htoken2").
        assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
        apply _. }
      iMod ("Hcl" with "[Hstate Hres]") as "_".
      { iNext. iRight. iRight. iExists _. iFrame. iFrame "HFIN".
        iRight. eauto. }
273 274
      iModIntro. wp_op. wp_if. wp_bind (!#res)%E.
      iInv (N.@"task") as "[>(Hstate & Hres & Hpending & HINIT)|[Hstatus|Hstatus]]" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
275
      { iExFalso. iApply (shot_not_pending with "Hshot Hpending"). }
276
      { iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & >HSETRES)".
Dan Frumin's avatar
Dan Frumin committed
277 278
        iExFalso. iApply (SET_RES_not_FIN with "HSETRES HFIN"). }
      iDestruct "Hstatus" as (v') "(Hstate & Hres & _ & HQ')".
279 280 281 282
      iDestruct "HQ'" as "[[? >Hpending]|>Hshot']".
      { iExFalso. iApply (shot_not_pending with "Hshot Hpending"). }
      iDestruct (shot_agree with "Hshot Hshot'") as %->.
      wp_load.
Dan Frumin's avatar
Dan Frumin committed
283 284
      iMod ("Hcl" with "[Hres Hstate]") as "_".
      { iNext. iRight. iRight. iExists _; iFrame. iFrame "HFIN". by iRight. }
285
      iModIntro. wp_match. iApply "HΦ"; eauto.
Dan Frumin's avatar
Dan Frumin committed
286 287
  Qed.

288
  Lemma task_Run_spec γb γ γ' r t P Q :
Dan Frumin's avatar
Dan Frumin committed
289
    {{{ runner γb P Q r  isTask r γ γ' t P Q }}}
Dan Frumin's avatar
Dan Frumin committed
290 291 292 293
       task_Run t
    {{{ RET #(); True }}}.
  Proof.
    iIntros (Φ) "[#Hrunner Htask] HΦ".
Dan Frumin's avatar
Dan Frumin committed
294
    rewrite runner_unfold.
Dan Frumin's avatar
Dan Frumin committed
295 296 297 298 299 300 301
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)".
    iDestruct "Htask" as (arg state res) "(% & HP & HINIT & #Htask)".
    simplify_eq. rewrite /task_Run.
    repeat wp_pure _.
    wp_bind (body _ arg).
    iDestruct ("Hbody" $! (PairV body bag) arg) as "Hbody'".
    iSpecialize ("Hbody'" with "[HP]").
Dan Frumin's avatar
Dan Frumin committed
302
    { iFrame. rewrite runner_unfold.
Dan Frumin's avatar
Dan Frumin committed
303 304 305 306
      iExists _,_; iSplitR; eauto. }
    iApply (wp_wand with "Hbody'").
    iIntros (v) "HQ". wp_let.
    wp_bind (#res <- SOME v)%E.
307
    iInv (N.@"task") as "[>(Hstate & Hres & Hpending & HINIT')|[Hstatus|Hstatus]]" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
308 309 310 311 312 313 314 315
    - wp_store.
      iMod (INIT_SET_RES v γ' with "[HINIT HINIT']") as "[HSETRES HSETRES']".
      { iApply (fractional_split_2 with "HINIT HINIT'").
        assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
        apply _. }
      iMod ("Hcl" with "[HSETRES Hstate Hres Hpending]") as "_".
      { iNext. iRight. iLeft. iExists _; iFrame. }
      iModIntro. wp_let.
316
      iInv (N.@"task") as "[>(Hstate & Hres & Hpending & HINIT')|[Hstatus|Hstatus]]" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
317 318 319 320 321 322 323 324 325 326 327
      { iExFalso. iApply (INIT_not_SET_RES with "HINIT' HSETRES'"). }
      + iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & HSETRES)".
        wp_store.
        iDestruct (SET_RES_agree with "HSETRES HSETRES'") as %->.
        iMod (SET_RES_FIN v v with "[HSETRES HSETRES']") as "#HFIN".
        { iApply (fractional_split_2 with "HSETRES HSETRES'").
          assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
          apply _. }
        iMod ("Hcl" with "[-HΦ]") as "_".
        { iNext. do 2 iRight. iExists _; iFrame. iFrame "HFIN". iLeft. iFrame.  }
        iModIntro. by iApply "HΦ".
328
      + iDestruct "Hstatus" as (v') "(Hstate & Hres & >HFIN & HQ')".
Dan Frumin's avatar
Dan Frumin committed
329
        iExFalso. iApply (SET_RES_not_FIN with "HSETRES' HFIN").
330
    - iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & >HSETRES)".
Dan Frumin's avatar
Dan Frumin committed
331
      iExFalso. iApply (INIT_not_SET_RES with "HINIT HSETRES").
332
    - iDestruct "Hstatus" as (v') "(Hstate & Hres & >HFIN & HQ')".
Dan Frumin's avatar
Dan Frumin committed
333 334 335
      iExFalso. iApply (INIT_not_FIN with "HINIT HFIN").
  Qed.

336
  Lemma runner_runTask_spec γb P Q r:
Dan Frumin's avatar
Dan Frumin committed
337
    {{{ runner γb P Q r }}}
Dan Frumin's avatar
Dan Frumin committed
338 339 340 341
      runner_runTask r
    {{{ RET #(); True }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
Dan Frumin's avatar
Dan Frumin committed
342
    rewrite runner_unfold /runner_runTask.
Dan Frumin's avatar
Dan Frumin committed
343 344 345 346 347 348 349 350 351 352
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)"; simplify_eq.
    repeat wp_pure _.
    wp_bind (popBag b _).
    iApply (popBag_spec with "Hbag").
    iNext. iIntros (t') "[_ [%|Ht]]"; simplify_eq.
    - wp_match. by iApply "HΦ".
    - iDestruct "Ht" as (t) "[% Ht]".
      iDestruct "Ht" as (γ γ') "Htask".
      simplify_eq. wp_match.
      iApply (task_Run_spec with "[Hbag Hbody Htask]"); last done.
Dan Frumin's avatar
Dan Frumin committed
353
      iFrame "Htask". rewrite runner_unfold.
Dan Frumin's avatar
Dan Frumin committed
354 355 356
      iExists _,_; iSplit; eauto.
  Qed.

357
  Lemma runner_runTasks_spec γb P Q r:
Dan Frumin's avatar
Dan Frumin committed
358
    {{{ runner γb P Q r }}}
Dan Frumin's avatar
Dan Frumin committed
359 360 361 362 363 364 365 366 367 368
      runner_runTasks r
    {{{ RET #(); False }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    iLöb as "IH". rewrite /runner_runTasks.
    wp_rec. wp_bind (runner_runTask r).
    iApply runner_runTask_spec; eauto.
    iNext. iIntros "_". wp_rec. by iApply "IH".
  Qed.

369
  Lemma loop_spec (n i : nat) P Q γb r:
Dan Frumin's avatar
Dan Frumin committed
370
    {{{ runner γb P Q r }}}
Dan Frumin's avatar
Dan Frumin committed
371 372 373 374
      (rec: "loop" "i" :=
         if: "i" < #n
         then Fork (runner_runTasks r);; "loop" ("i" + #1)
         else r) #i
Dan Frumin's avatar
Dan Frumin committed
375
    {{{ r, RET r; runner γb P Q r }}}.
Dan Frumin's avatar
Dan Frumin committed
376 377 378 379 380 381 382 383 384 385 386 387 388
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    iLöb as "IH" forall (i).
    wp_rec. wp_op. case_bool_decide; wp_if; last first.
    { by iApply "HΦ". }
    wp_bind (Fork _). iApply wp_fork. iSplitL.
    - iNext. wp_rec. wp_op.
      (* Set Printing Coercions. *)
      assert ((Z.of_nat i + 1) = Z.of_nat (i + 1)) as -> by lia.
      iApply ("IH" with "HΦ").
    - iNext. by iApply runner_runTasks_spec.
  Qed.

389 390
  Lemma newRunner_spec P Q (fe ne : expr) (f : val) (n : nat)
    `{!IntoVal fe f} `{!IntoVal ne (#n)}:
Dan Frumin's avatar
Dan Frumin committed
391
    {{{  (γ: name Σ b) (r: val),
Dan Frumin's avatar
Dan Frumin committed
392
            a: val, (runner γ P Q r  P a - WP f r a {{ v, Q a v }}) }}}
393
       newRunner fe ne
Dan Frumin's avatar
Dan Frumin committed
394
    {{{ γb r, RET r; runner γb P Q r }}}.
Dan Frumin's avatar
Dan Frumin committed
395 396
  Proof.
    iIntros (Φ) "#Hf HΦ".
397 398
    rewrite -(of_to_val fe f into_val).
    rewrite -(of_to_val ne #n into_val).
Dan Frumin's avatar
Dan Frumin committed
399 400 401 402 403 404
    unfold newRunner. iApply wp_fupd.
    repeat wp_pure _.
    wp_bind (newBag b #()).
    iApply (newBag_spec b (N.@"bag") (λ x y,  γ γ', isTask (f,x) γ γ' y P Q)%I); auto.
    iNext. iIntros (bag). iDestruct 1 as (γb) "#Hbag".
    do 3 wp_let.
Dan Frumin's avatar
Dan Frumin committed
405 406
    iAssert (runner γb P Q (PairV f bag))%I with "[]" as "#Hrunner".
    { rewrite runner_unfold. iExists _,_. iSplit; eauto. }
Dan Frumin's avatar
Dan Frumin committed
407 408 409 410
    iApply (loop_spec n 0 with "Hrunner [HΦ]"); eauto.
    iNext. iIntros (r) "Hr". by iApply "HΦ".
  Qed.

411 412
  Lemma runner_Fork_spec γb (re ae:expr) (r a:val) P Q
    `{!IntoVal re r} `{!IntoVal ae a}:
Dan Frumin's avatar
Dan Frumin committed
413
    {{{ runner γb P Q r  P a }}}
414 415
       runner_Fork re ae
    {{{ γ γ' t, RET t; task γ γ' t a P Q }}}.
Dan Frumin's avatar
Dan Frumin committed
416 417
  Proof.
    iIntros (Φ) "[#Hrunner HP] HΦ".
418 419
    rewrite -(of_to_val re r into_val).
    rewrite -(of_to_val ae a into_val).
Dan Frumin's avatar
Dan Frumin committed
420
    rewrite /runner_Fork runner_unfold.
Dan Frumin's avatar
Dan Frumin committed
421 422 423
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)". simplify_eq.
    Local Opaque newTask.
    repeat wp_pure _. wp_bind (newTask _ _).
424
    iApply (newTask_spec γb (body,bag) a P Q with "[Hbag Hbody HP]").
Dan Frumin's avatar
Dan Frumin committed
425
    { iFrame "HP". rewrite runner_unfold.
Dan Frumin's avatar
Dan Frumin committed
426 427 428 429 430 431 432
      iExists _,_; iSplit; eauto. }
    iNext. iIntros (γ γ' t) "[Htask Htask']". wp_let.
    wp_bind (pushBag _ _ _).
    iApply (pushBag_spec with "[$Hbag Htask]"); eauto.
    iNext. iIntros "_". wp_rec. by iApply "HΦ".
  Qed.
End contents.
433

Dan Frumin's avatar
Dan Frumin committed
434
Opaque runner task newRunner runner_Fork task_Join.