diff --git a/hol4/Infra/MachineTypeScript.sml b/hol4/Infra/MachineTypeScript.sml index 5b3abec2fd3d6798edab0ac0dc280549fe5d0ed1..1802af5fe9a7d240a7bb60eeae0533307acb4e6b 100644 --- a/hol4/Infra/MachineTypeScript.sml +++ b/hol4/Infra/MachineTypeScript.sml @@ -4,7 +4,7 @@ @author: Raphael Monat @maintainer: Heiko Becker **) -open realTheory realLib; +open realTheory realLib integerTheory; open RealSimpsTheory; open preambleFloVer; @@ -16,7 +16,15 @@ val _ = List.app monadsyntax.enable_monad ["option"]; Datatype: - mType = REAL | M16 | M32 | M64 | F num num bool (* first num is word length, second is fractional bits, bool is for sign of fractional bits *) + mType = REAL + (* Floating point formats *) + | M16 | M32 | M64 + (* Fixed point formats: + * first num is word length, + * second is fractional bits, + * bool is for sign of fractional bits, inverse of the exponent sign with T <=> positive + *) + | F num num bool End Definition isFixedPoint_def : @@ -181,9 +189,8 @@ QED REAL is real-valued evaluation, hence the most precise. All floating-point types are compared by mTypeToQ m1 <= mTypeToQ m2 - All fixed-point types are compared by comparing only the word size - We consider a 32 bit fixed-point number to be more precise than a 16 bit - fixed-point number, no matter what the fractional bits may be. + All fixed-point types are compared by comparing the positions of the + least and most significant bits. It is equivalent to a subset check. For the moment, fixed-point and floating-point formats are incomparable. **) Definition isMorePrecise_def: @@ -191,13 +198,8 @@ Definition isMorePrecise_def: case m1, m2 of | REAL, _ => T | F w1 f1 s1, F w2 f2 s2 => - if s1 then - if s2 then - (w2 ≤ w1 ∧ f2 ≤ f1) - else - (w2 ≤ w1) - else if s2 then F - else (w2 ≤ w1 ∧ f2 ≤ f1) + let exp1: int = if s1 then &f1 else -&f1 ; exp2 = if s2 then &f2 else -&f2 in + &w2 + exp2 <= &w1 + exp1 /\ exp1 <= exp2 | F w f s, _ => F | _, F w f s=> F | M16, M16 => T @@ -215,13 +217,8 @@ End Definition morePrecise_def: (morePrecise REAL _ = T) /\ (morePrecise (F w1 f1 s1) (F w2 f2 s2) = - (if s1 then - if s2 then - (w2 ≤ w1 ∧ f2 ≤ f1) - else - (w2 ≤ w1) - else if s2 then F - else (w2 ≤ w1 ∧ f2 ≤ f1))) ∧ + let exp1: int = if s1 then &f1 else -&f1 ; exp2 = if s2 then &f2 else -&f2 in + &w2 + exp2 <= &w1 + exp1 /\ exp1 <= exp2) /\ (morePrecise (F w f s) _ = F) /\ (morePrecise _ (F w f s) = F) /\ (morePrecise M16 M16 = T) /\ @@ -241,7 +238,7 @@ Proof rpt strip_tac \\ Cases_on `m1` \\ Cases_on `m2` \\ Cases_on `m3` \\ fs[morePrecise_def] - \\ every_case_tac \\ gs[] + \\ ntac 2 $ dxrule_all INT_LE_TRANS \\ simp[] QED Theorem isMorePrecise_morePrecise: @@ -305,7 +302,7 @@ End Definition isJoin_def: isJoin m1 m2 mj = if (isFixedPoint m1 /\ isFixedPoint m2) - then morePrecise m1 mj /\ morePrecise m2 mj + then morePrecise mj m1 /\ morePrecise mj m2 else (case join_fl m1 m2 of |NONE => F @@ -315,7 +312,7 @@ End Definition isJoin3_def: isJoin3 m1 m2 m3 mj = if (isFixedPoint m1 /\ isFixedPoint m2 /\ isFixedPoint m3) - then morePrecise m1 mj /\ morePrecise m2 mj /\ morePrecise m3 mj + then morePrecise mj m1 /\ morePrecise mj m2 /\ morePrecise mj m3 else (case join_fl3 m1 m2 m3 of |NONE => F diff --git a/hol4/TypeValidatorScript.sml b/hol4/TypeValidatorScript.sml index 4e6676a30108e16321bd4a434f8045f9f076faa5..38cc3482cd370d92d70591d0983b10ce035bc9a8 100644 --- a/hol4/TypeValidatorScript.sml +++ b/hol4/TypeValidatorScript.sml @@ -131,7 +131,7 @@ Definition getValidMap_def: case mOldO of | NONE => Fail "Undefined fixed-point type" | SOME mj => - if (morePrecise t1 mj /\ morePrecise t2 mj) + if (morePrecise mj t1 /\ morePrecise mj t2) then addMono e mj akk2_map else Fail "Incorrect fixed-point type" else @@ -165,7 +165,7 @@ Definition getValidMap_def: case mOldO of | NONE => Fail "Undefined fixed-point type" | SOME mj => - if (morePrecise t1 mj /\ morePrecise t2 mj /\ morePrecise t3 mj) + if (morePrecise mj t1 /\ morePrecise mj t2 /\ morePrecise mj t3) then addMono e mj akk3_map else Fail "Incorrect fixed-point type" else if (t1 = REAL ∨ t2 = REAL ∨ t3 = REAL) @@ -254,7 +254,7 @@ Proof \\ Cases_on `getValidMap Gamma e1 akk` \\ fs[result_bind_def] \\ Cases_on `getValidMap Gamma e2 a` \\ fs[option_case_eq] \\ Cases_on `isFixedPoint t1` \\ Cases_on `isFixedPoint t2` \\ fs[option_case_eq] - >- (Cases_on `morePrecise t1 mj` \\ Cases_on `morePrecise t2 mj` + >- (Cases_on `morePrecise mj t1` \\ Cases_on `morePrecise mj t2` \\ fs[addMono_def, option_case_eq] \\ rveq \\ res_tac \\ by_monotonicity) @@ -277,9 +277,9 @@ Proof \\ Cases_on `isFixedPoint t2` \\ Cases_on `isFixedPoint t3` \\ fs[option_case_eq] - >- (Cases_on `morePrecise t1 mj` - \\ Cases_on `morePrecise t2 mj` - \\ Cases_on `morePrecise t3 mj` + >- (Cases_on `morePrecise mj t1` + \\ Cases_on `morePrecise mj t2` + \\ Cases_on `morePrecise mj t3` \\ fs[addMono_def, option_case_eq] \\ rveq \\ res_tac \\ by_monotonicity) @@ -475,7 +475,7 @@ Proof by (rpt strip_tac \\ first_x_assum irule \\ fs[] \\ qexistsl_tac [`Gamma`, `a`] \\ fs[]) \\ Cases_on ‘isFixedPoint x ∧ isFixedPoint x'’ - >- (fs[option_case_eq] \\ Cases_on `morePrecise x mj` \\ Cases_on `morePrecise x' mj` + >- (fs[option_case_eq] \\ Cases_on `morePrecise mj x` \\ Cases_on `morePrecise mj x'` \\ fs[addMono_def, option_case_eq] \\ rveq \\ fs[FloverMapTree_mem_def, map_find_add] \\ reverse (Cases_on `e'' = Binop b e1 e2`) \\ fs[] @@ -604,8 +604,8 @@ Proof \\ qexistsl_tac [`Gamma`, `map2`] \\ fs[]) \\ Cases_on `isFixedPoint x /\ isFixedPoint x' /\ isFixedPoint x''` >- (fs[option_case_eq] - \\ Cases_on `morePrecise x mj` \\ Cases_on `morePrecise x' mj` - \\ Cases_on `morePrecise x'' mj` + \\ Cases_on `morePrecise mj x` \\ Cases_on `morePrecise mj x'` + \\ Cases_on `morePrecise mj x''` \\ fs[addMono_def, option_case_eq] \\ rveq \\ fs[FloverMapTree_mem_def, map_find_add] \\ rename1 `if eNew = Fma e1 e2 e3 then SOME mj else _`