diff --git a/hol4/binary/checkerBinaryScript.sml b/hol4/binary/checkerBinaryScript.sml index 50a515b2088083549113ba3b449275f9697b68ea..bdbff08ce73130e33f796878a2f3875385719227 100644 --- a/hol4/binary/checkerBinaryScript.sml +++ b/hol4/binary/checkerBinaryScript.sml @@ -4,8 +4,6 @@ val _ = new_theory "checkerBinary" val checker_compiled = save_thm("checker_compiled", compile_x64 - 1000 (* stack size in MB *) - 1000 (* heap size in MB *) "checker" main_prog_def); diff --git a/hol4/binary/transScript.sml b/hol4/binary/transScript.sml index ffd5948604bf5b5eed2782519dfe1fb876f1370a..a8a278464798d38102d69e1d333a9c813916da25 100644 --- a/hol4/binary/transScript.sml +++ b/hol4/binary/transScript.sml @@ -30,7 +30,7 @@ val real_div_side = prove( val check_def = Define ` check (f:real cmd) (P:precond) (A:analysisResult) Gamma (n:num) = case n of - | SUC n' => (CertificateCheckerCmd f A P Gamma /\ check f P A Gamma n') + | SUC n' => (case CertificateCheckerCmd f A P Gamma of | SOME _ => T |_ => F)/\ check f P A Gamma n' | _ => T` val check_all_def = Define ` @@ -303,7 +303,9 @@ val precond_validErrorbound_true = prove (`` \\ rveq \\ fs[] \\ first_x_assum irule - \\ Flover_compute ``validIntervalbounds``) + \\ qpat_x_assum `validIntervalbounds _ _ _ _` mp_tac + \\ simp[SimpL “$==>â€, Once validIntervalbounds_def] + \\ ntac 2 (TOP_CASE_TAC \\ gs[])) \\ conj_tac >- (disch_then (fn thm => fs [thm] \\ ASSUME_TAC thm) \\ conj_tac @@ -351,11 +353,13 @@ val precond_validErrorbound_true = prove (`` \\ conj_tac >- (rpt strip_tac \\ rveq - \\ Flover_compute ``validIntervalbounds`` - \\ first_x_assum irule \\ fs[]) + \\ qpat_x_assum `validIntervalbounds _ _ _ _` mp_tac + \\ simp[SimpL “$==>â€, Once validIntervalbounds_def] + \\ ntac 2 (TOP_CASE_TAC \\ gs[])) \\ rpt strip_tac - \\ rveq \\ Flover_compute ``validIntervalbounds`` - \\ first_x_assum irule \\ fs[]); + \\ qpat_x_assum `validIntervalbounds _ _ _ _` mp_tac + \\ simp[SimpL “$==>â€, Once validIntervalbounds_def] + \\ ntac 2 (TOP_CASE_TAC \\ gs[])); val precond_errorbounds_true = prove (`` !P f exprTypes A dVars.