Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
AVA
FloVer
Commits
604e29ed
Commit
604e29ed
authored
Aug 04, 2017
by
Heiko Becker
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
WIP: Start working on splitting of soundness proof into 2 separate proofs
parent
68ef7703
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
699 additions
and
137 deletions
+699
-137
coq/Environments.v
coq/Environments.v
+4
-3
coq/ErrorValidation.v
coq/ErrorValidation.v
+687
-133
coq/Infra/Ltacs.v
coq/Infra/Ltacs.v
+1
-1
coq/Infra/MachineType.v
coq/Infra/MachineType.v
+7
-0
No files found.
coq/Environments.v
View file @
604e29ed
...
...
@@ -108,15 +108,16 @@ Proof.
rewrite
x_x0_neq
in
x_typed
;
auto
.
Qed
.
Lemma
approxEnv_dVar_bounded
v2
m
:
Lemma
approxEnv_dVar_bounded
v2
m
e
:
E1
x
=
Some
v
->
E2
x
=
Some
v2
->
NatSet
.
In
x
dVars
->
Gamma
x
=
Some
m
->
(
Rabs
(
v
-
v2
)
<=
Q2R
(
snd
(
A
(
Var
Q
x
))))
%
R
.
snd
(
A
(
Var
Q
x
))
=
e
->
(
Rabs
(
v
-
v2
)
<=
Q2R
e
)
%
R
.
Proof
.
induction
approxEnvs
;
intros
E1_def
E2_def
x_def
x_typed
.
intros
E1_def
E2_def
x_def
x_typed
A_e
;
subst
.
-
unfold
emptyEnv
in
*
;
simpl
in
*
;
congruence
.
-
assert
(
x
=?
x0
=
false
)
as
x_x0_neq
.
{
rewrite
Nat
.
eqb_neq
;
hnf
;
intros
;
subst
.
...
...
coq/ErrorValidation.v
View file @
604e29ed
This diff is collapsed.
Click to expand it.
coq/Infra/Ltacs.v
View file @
604e29ed
...
...
@@ -66,4 +66,4 @@ Ltac destruct_if :=
intros
name
;
rewrite
name
in
*
;
try
congruence
end
.
end
.
\ No newline at end of file
coq/Infra/MachineType.v
View file @
604e29ed
...
...
@@ -81,6 +81,13 @@ Proof.
-
case_eq
m1
;
intros
;
case_eq
m2
;
intros
;
subst
;
cbv
;
congruence
.
Qed
.
Ltac
type_conv
:=
repeat
(
match
goal
with
|
[
H
:
mTypeEq
_
_
=
true
|-
_
]
=>
rewrite
mTypeEq_compat_eq
in
H
;
subst
|
[
H
:
mTypeEq
_
_
=
false
|-
_
]
=>
rewrite
mTypeEq_compat_eq_false
in
H
end
).
Lemma
mTypeEq_sym
(
m1
:
mType
)
(
m2
:
mType
)
:
forall
b
,
mTypeEq
m1
m2
=
b
->
mTypeEq
m2
m1
=
b
.
Proof
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment