Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
AVA
FloVer
Commits
5c7b0225
Commit
5c7b0225
authored
Feb 06, 2017
by
Heiko Becker
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Move some lemmas
parent
2e3aaa7d
Changes
2
Hide whitespace changes
Inline
Sidebyside
Showing
2 changed files
with
26 additions
and
25 deletions
+26
25
coq/Infra/RealRationalProps.v
coq/Infra/RealRationalProps.v
+0
25
coq/IntervalArith.v
coq/IntervalArith.v
+26
0
No files found.
coq/Infra/RealRationalProps.v
View file @
5c7b0225
...
...
@@ 165,31 +165,6 @@ Proof.
unfold
Qle_bool
;
auto
.
Qed
.
Lemma
minAbs_positive_iv_is_lo
a
b
:
(
0
<
a
)
%
R
>
(
a
<=
b
)
%
R
>
RminAbsFun
(
a
,
b
)
=
a
.
Proof
.
intros
;
unfold
RminAbsFun
;
simpl
.
assert
(
0
<
b
)
%
R
by
lra
.
assert
(
Rabs
a
=
a
)
%
R
as
Rabs_pos_a
by
(
apply
Rabs_right
;
lra
).
assert
(
Rabs
b
=
b
)
%
R
as
Rabs_pos_b
by
(
apply
Rabs_right
;
lra
).
rewrite
Rabs_pos_a
,
Rabs_pos_b
.
rewrite
Rmin_left
;
lra
.
Qed
.
Lemma
minAbs_negative_iv_is_hi
a
b
:
(
b
<
0
)
%
R
>
(
a
<=
b
)
%
R
>
(
RminAbsFun
(
a
,
b
)
=

b
)
%
R
.
Proof
.
intros
;
unfold
RminAbsFun
;
simpl
.
assert
(
Rabs
a
=

a
)
%
R
as
Rabs_neg_a
by
(
apply
Rabs_left
;
lra
).
assert
(
Rabs
b
=

b
)
%
R
as
Rabs_neg_b
by
(
apply
Rabs_left
;
lra
).
rewrite
Rabs_neg_a
,
Rabs_neg_b
.
rewrite
Rmin_right
;
lra
.
Qed
.
Lemma
Q_case_div_to_R_case_div
a
b
:
(
b
<
0
\
/
0
<
a
)
%
Q
>
(
Q2R
b
<
0
\
/
0
<
Q2R
a
)
%
R
.
...
...
coq/IntervalArith.v
View file @
5c7b0225
...
...
@@ 347,4 +347,30 @@ Proof.
rewrite
Rabs_minus_sym
in
abs_le
.
unfold
Rabs
in
abs_le
.
destruct
Rcase_abs
in
abs_le
;
try
lra
.
Qed
.
Lemma
minAbs_positive_iv_is_lo
a
b
:
(
0
<
a
)
%
R
>
(
a
<=
b
)
%
R
>
RminAbsFun
(
a
,
b
)
=
a
.
Proof
.
intros
;
unfold
RminAbsFun
;
simpl
.
assert
(
0
<
b
)
%
R
by
lra
.
assert
(
Rabs
a
=
a
)
%
R
as
Rabs_pos_a
by
(
apply
Rabs_right
;
lra
).
assert
(
Rabs
b
=
b
)
%
R
as
Rabs_pos_b
by
(
apply
Rabs_right
;
lra
).
rewrite
Rabs_pos_a
,
Rabs_pos_b
.
rewrite
Rmin_left
;
lra
.
Qed
.
Lemma
minAbs_negative_iv_is_hi
a
b
:
(
b
<
0
)
%
R
>
(
a
<=
b
)
%
R
>
(
RminAbsFun
(
a
,
b
)
=

b
)
%
R
.
Proof
.
intros
;
unfold
RminAbsFun
;
simpl
.
assert
(
Rabs
a
=

a
)
%
R
as
Rabs_neg_a
by
(
apply
Rabs_left
;
lra
).
assert
(
Rabs
b
=

b
)
%
R
as
Rabs_neg_b
by
(
apply
Rabs_left
;
lra
).
rewrite
Rabs_neg_a
,
Rabs_neg_b
.
rewrite
Rmin_right
;
lra
.
Qed
.
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment