diff --git a/hol4/ErrorBoundsScript.sml b/hol4/ErrorBoundsScript.sml index f9b2a3ac18cf192bc65c660597a555cc165986fa..de5066aff8284f56497f1d83fabaabf983a454d3 100644 --- a/hol4/ErrorBoundsScript.sml +++ b/hol4/ErrorBoundsScript.sml @@ -440,6 +440,42 @@ Proof \\ rewrite_tac [ABS_MUL] \\ irule REAL_LE_LMUL_IMP \\ fs[] QED +Theorem sqrt_abs_err_bounded: + !(e:real expr) (nR:real) nR1 (nF1:real) (nF:real) (E1:env) (E2:env) (err:real) + (m1 m:mType) (Gamma: real expr -> mType option). + eval_expr E1 (toRTMap Gamma) (toREval e) nR1 REAL /\ + eval_expr E2 Gamma e nF1 m1 /\ + eval_expr E1 (toRTMap Gamma) (toREval (Unop Sqrt e)) nR REAL /\ + eval_expr (updEnv 1 nF1 emptyEnv) + (updDefVars (Unop Sqrt (Var 1)) m + (updDefVars (Var 1) m1 Gamma)) + (Unop Sqrt (Var 1)) nF m /\ + abs (nR1 - nF1) <= err ⇒ + abs (nR - nF) <= abs (sqrt nR1 - sqrt nF1) + computeError (sqrt nF1) m +Proof + rpt strip_tac + \\ inversion `eval_expr (updEnv _ _ _) _ _ _ _` eval_expr_cases \\ gs[] + \\ inversion `eval_expr (updEnv _ _ _) _ _ _ _` eval_expr_cases \\ gs[] + \\ rveq \\ gs[toREval_def, updDefVars_def] \\ rveq + \\ inversion `eval_expr _ _ (Unop Sqrt _) _ _` eval_expr_cases \\ gs[] + \\ rveq \\ gs[] + \\ ‘m1' = REAL’ by (Cases_on ‘m1'’ \\ gs[isCompat_def]) + \\ rveq \\ gs[perturb_def] + \\ ‘v1 = nR1’ by (imp_res_tac meps_0_deterministic \\ gs[]) + \\ rveq + \\ Cases_on ‘m’ \\ gs[perturb_def, evalUnop_def, computeError_pos, real_sub] + \\ TRY (COND_CASES_TAC \\ gs[]) + \\ rewrite_tac [REAL_NEG_ADD, REAL_ADD_ASSOC, REAL_ADD_LDISTRIB] + \\ triangle_tac \\ gs[computeError_def, REAL_ABS_MUL] + \\ irule REAL_LE_TRANS THENL [ + qexists_tac ‘mTypeToR M16 (sqrt nF1) * abs (sqrt nF1)’, + qexists_tac ‘mTypeToR M32 (sqrt nF1) * abs (sqrt nF1)’, + qexists_tac ‘mTypeToR M64 (sqrt nF1) * abs (sqrt nF1)’] + \\ conj_tac + \\ TRY (irule REAL_LE_RMUL_IMP \\ gs[]) + \\ gs[REAL_MUL_COMM, mTypeToR_def] +QED + Theorem nonzerop_EQ1_I'[simp]: 0 < r ⇒ (nonzerop r = 1) Proof diff --git a/hol4/ErrorIntervalInferenceScript.sml b/hol4/ErrorIntervalInferenceScript.sml index 32574f07357013014aac692274efc589ae62245d..b140f267be9c32ef7230d96e598f4255c3aacd04 100644 --- a/hol4/ErrorIntervalInferenceScript.sml +++ b/hol4/ErrorIntervalInferenceScript.sml @@ -37,6 +37,22 @@ Definition inferErrorbound_def: SOME (FloverMapTree_insert e (iv_f, err1) recRes); od | Unop Inv e1 => NONE + | Unop Sqrt e1 => + do + recRes <- inferErrorbound e1 typeMap I akk; + (iv1, err1) <- FloverMapTree_find e1 recRes; + let errIve1 = widenInterval iv1 err1; + sqrtRealLo = newton ITERCOUNT (IVlo iv1 * 0.99) (IVlo iv1 * 0.99); + sqrtRealHi = newton ITERCOUNT (IVhi iv1 * 1.01) (IVhi iv1 * 1.01); + sqrtRealIv = (sqrtRealLo, sqrtRealHi); + sqrtFinLo= newton ITERCOUNT (IVlo errIve1 * 0.99) (IVlo errIve1 * 0.99); + sqrtFinHi = newton ITERCOUNT (IVhi errIve1 * 1.01) (IVhi errIve1 * 1.01); + sqrtFinIv = (sqrtFinLo, sqrtFinHi); + propError = maxAbs (subtractInterval sqrtRealIv sqrtFinIv); + mAbs = maxAbs sqrtFinIv + in + SOME (FloverMapTree_insert e (iv_f, propError + computeError mAbs m) recRes); + od | Binop op e1 e2 => do recRes1 <- inferErrorbound e1 typeMap I akk; diff --git a/hol4/ErrorValidationScript.sml b/hol4/ErrorValidationScript.sml index 5ad5d16b06967e07fc462ac387dbbba9773135fe..fbb521f9c23ef560c7859f5481cff9e5e5cd1967 100644 --- a/hol4/ErrorValidationScript.sml +++ b/hol4/ErrorValidationScript.sml @@ -11,7 +11,7 @@ open AbbrevsTheory ExpressionsTheory ExpressionSemanticsTheory RealSimpsTheory RealRangeArithTheory FloverTactics MachineTypeTheory ExpressionAbbrevsTheory ErrorBoundsTheory IntervalArithTheory TypeValidatorTheory IntervalValidationTheory EnvironmentsTheory - CommandsTheory ssaPrgsTheory FloverMapTheory; + CommandsTheory ssaPrgsTheory FloverMapTheory sqrtApproxTheory; open preambleFloVer; val _ = new_theory "ErrorValidation"; @@ -29,26 +29,51 @@ val triangle_tac = fun real_rewrite t = rewrite_tac [REAL_ARITH (Parse.Term t)]; +val real_prove = + rpt (qpat_x_assum `!x. _` kall_tac) + \\ rpt (qpat_x_assum `_ ==> ! x. _` kall_tac) + \\ REAL_ASM_ARITH_TAC; + Definition validErrorbound_def: validErrorbound e (typeMap: typeMap) (A:analysisResult) (dVars:num_set)= case FloverMapTree_find e A, FloverMapTree_find e typeMap of | NONE, _ => F | _, NONE => F | SOME (intv, err), SOME m => - (if (0 <= err) - then + (if (0 <= err) then case e of | Var v => - if (lookup v dVars = SOME ()) - then T + if (lookup v dVars = SOME ()) then T else computeError (maxAbs intv) m <= err | Const _ n => (computeError (maxAbs intv) m <= err) | Unop Neg e1 => - if (validErrorbound e1 typeMap A dVars) - then + if (validErrorbound e1 typeMap A dVars) then case (FloverMapTree_find e1 A) of - | SOME (_, err1) => err = err1 - | _ => F + | SOME (_, err1) => err = err1 + | _ => F + else F + | Unop Sqrt e1 => + if (validErrorbound e1 typeMap A dVars) then + case (FloverMapTree_find e1 A) of + | SOME (iv1, err1) => + let errIve1 = widenInterval iv1 err1; + sqrtRealLo = newton ITERCOUNT (IVlo iv1 * 0.99) (IVlo iv1 * 0.99); + sqrtRealHi = newton ITERCOUNT (IVhi iv1 * 1.01) (IVhi iv1 * 1.01); + sqrtRealIv = (sqrtRealLo, sqrtRealHi); + sqrtFinLo= newton ITERCOUNT (IVlo errIve1 * 0.99) (IVlo errIve1 * 0.99); + sqrtFinHi = newton ITERCOUNT (IVhi errIve1 * 1.01) (IVhi errIve1 * 1.01); + sqrtFinIv = (sqrtFinLo, sqrtFinHi); + propError = maxAbs (subtractInterval sqrtRealIv sqrtFinIv); + mAbs = maxAbs sqrtFinIv + in + if (validate_newton_down sqrtRealLo (IVlo iv1) ∧ + validate_newton_up sqrtRealHi (IVhi iv1) ∧ + validate_newton_down sqrtFinLo (IVlo errIve1) ∧ + validate_newton_up sqrtFinHi (IVhi errIve1) ∧ + 0 < IVlo errIve1) then + propError + computeError mAbs m <= err + else F + | _ => F else F | Unop Inv e1 => F | Binop op e1 e2 => @@ -2232,6 +2257,80 @@ Proof \\ rpt (first_x_assum (destruct) \\ fs[]) QED +Theorem validErrorboundCorrectSqrt: + ∀(E1 E2:env) (A:analysisResult) (e:real expr) + (nR nR1 nF nF1:real) (err err1:real) (alo ahi elo ehi:real) dVars m m1 Gamma. + eval_Real E1 Gamma e nR1 ∧ + eval_Fin E2 Gamma e nF1 m1 ∧ + eval_Real E1 Gamma (Unop Sqrt e) nR ∧ + eval_expr (updEnv 1 nF1 emptyEnv) + (updDefVars (Unop Sqrt (Var 1)) m + (updDefVars (Var 1) m1 (toRExpMap Gamma))) + (Unop Sqrt (Var 1)) nF m /\ + validErrorbound (Unop Sqrt e) Gamma A dVars ∧ + elo <= nR1 ∧ nR1 <= ehi ∧ + 0 < elo ∧ + FloverMapTree_find e A = SOME ((elo, ehi), err1) ∧ + FloverMapTree_find (Unop Sqrt e) A = SOME ((alo, ahi), err) ∧ + FloverMapTree_find (Unop Sqrt e) Gamma = SOME m ∧ + abs (nR1 - nF1) <= err1 ⇒ + abs (nR - nF) <= err +Proof + fs [toREval_def] \\ rpt strip_tac + \\ fs[Once validErrorbound_eq] \\ rveq + \\ irule REAL_LE_TRANS + \\ qexists_tac ‘abs (sqrt nR1 - sqrt nF1) + computeError (sqrt nF1) m’ + \\ conj_tac + >- (drule sqrt_abs_err_bounded \\ rpt $ disch_then drule + \\ disch_then $ qspecl_then [‘nR’, ‘nF’, ‘err1’, ‘m’] mp_tac + \\ gs[toREval_def]) + \\ ‘contained nF1 (widenInterval (elo, ehi) err1)’ + by (irule distance_gives_iv \\ find_exists_tac \\ gs[contained_def]) + \\ rpt ( + qpat_x_assum `validate_newton_down _ _` $ mp_then Any mp_tac validate_newton_lb_valid + \\ impl_tac + >- (conj_tac + >- (irule newton_method_pos \\ conj_tac \\ irule REAL_LE_MUL \\ gs[] \\ real_prove) + \\ real_prove) + \\ strip_tac) + \\ ‘0 < ehi’ + by ( + irule REAL_LTE_TRANS \\ qexists_tac ‘elo’ \\ gs[] + \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[]) + \\ ‘0 < SND (widenInterval (elo, ehi) err1)’ + by ( + irule REAL_LTE_TRANS \\ qexists_tac ‘FST (widenInterval (elo, ehi) err1)’ \\ gs[widenInterval_def] + \\ REAL_ASM_ARITH_TAC) + \\ rpt ( + qpat_x_assum `validate_newton_up _ _` $ mp_then Any mp_tac validate_newton_ub_valid + \\ impl_tac + >- (conj_tac + >- (irule newton_method_pos \\ conj_tac \\ irule REAL_LE_MUL \\ gs[] \\ real_prove) + \\ real_prove) + \\ strip_tac) + \\ irule REAL_LE_TRANS \\ once_rewrite_tac[CONJ_COMM] \\ asm_exists_tac \\ gs[] + \\ irule REAL_LE_ADD2 \\ conj_tac + (* Prove propagation error *) + >- ( + irule contained_leq_maxAbs + \\ assume_tac $ SIMP_RULE std_ss [validIntervalSub_def] interval_subtraction_valid + \\ pop_assum irule \\ conj_tac \\ gs[contained_def] + \\ conj_tac \\ irule REAL_LE_TRANS + >- (asm_exists_tac \\ gs[] \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + >- (once_rewrite_tac[CONJ_COMM] \\ asm_exists_tac \\ gs[] + \\ irule transcTheory.SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC) + >- (asm_exists_tac \\ gs[] \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ once_rewrite_tac[CONJ_COMM] \\ asm_exists_tac \\ gs[] + \\ irule transcTheory.SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC) + (* New error *) + \\ irule computeError_up + \\ irule contained_leq_maxAbs + \\ gs[contained_def] \\ conj_tac \\ irule REAL_LE_TRANS + >- (asm_exists_tac \\ gs[] \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ once_rewrite_tac[CONJ_COMM] \\ asm_exists_tac \\ gs[] + \\ irule transcTheory.SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC +QED + (** Soundness theorem for the error bound validator. Proof is by induction on the expression e. @@ -2277,31 +2376,79 @@ Proof \\ qpat_x_assum `validErrorbound _ _ _ _` mp_tac \\ simp[Once validErrorbound_eq] \\ strip_tac \\ Cases_on `u` \\ fs[toREval_def] \\ rveq + >- ( + rw_thm_asm `(domain _) DIFF _ SUBSET _` usedVars_def + \\ inversion `eval_expr E1 _ _ _ _` eval_expr_cases \\ fs[] + \\ `m' = REAL` by (irule toRTMap_eval_REAL \\ find_exists_tac \\ fs[]) + \\ PairCases_on `v4` \\ fs[] \\ rveq + \\ rename1 `FloverMapTree_find e A = SOME ((e_lo, e_hi) , err)` + \\ once_rewrite_tac [eval_expr_cases] \\ fs[] + \\ first_x_assum + (qspecl_then + [`E1`, `E2`, `A`, `v1`, `err`, `e_lo`, `e_hi`, `fVars`, + `dVars`, `Gamma`] + destruct) + >- (fs[Once validTypes_def, Once validRanges_def]) + \\ fs[Once validTypes_def, toRExpMap_def] \\ conj_tac \\ rpt strip_tac + >- (qexistsl_tac [`me`, `nF`] \\ fs[] + \\ `m' = me` + by (irule validTypes_exec + \\ rpt (find_exists_tac \\ fs[toRExpMap_def])) + \\ rveq \\ fs[]) + \\ fs[evalUnop_def] + \\ once_rewrite_tac [real_sub] + \\ rewrite_tac [GSYM REAL_NEG_ADD, ABS_NEG, GSYM real_sub] + \\ first_x_assum drule + \\ rpt (disch_then drule) + \\ disch_then assume_tac \\ fs[] + \\ first_x_assum irule \\ asm_exists_tac \\ fs[]) \\ rw_thm_asm `(domain _) DIFF _ SUBSET _` usedVars_def \\ inversion `eval_expr E1 _ _ _ _` eval_expr_cases \\ fs[] - \\ `m' = REAL` by (irule toRTMap_eval_REAL \\ find_exists_tac \\ fs[]) - \\ PairCases_on `v4` \\ fs[] \\ rveq - \\ rename1 `FloverMapTree_find e A = SOME ((e_lo, e_hi) , err)` + \\ `m1 = REAL` by (irule toRTMap_eval_REAL \\ find_exists_tac \\ fs[]) + \\ PairCases_on `iv1` \\ fs[] \\ rveq + \\ rename1 `FloverMapTree_find e A = SOME ((e_lo, e_hi) , err1)` \\ once_rewrite_tac [eval_expr_cases] \\ fs[] \\ first_x_assum - (qspecl_then - [`E1`, `E2`, `A`, `v1`, `err`, `e_lo`, `e_hi`, `fVars`, - `dVars`, `Gamma`] - destruct) - >- (fs[Once validTypes_def, Once validRanges_def]) - \\ fs[Once validTypes_def, toRExpMap_def] \\ conj_tac \\ rpt strip_tac - >- (qexistsl_tac [`me`, `nF`] \\ fs[] + (qspecl_then + [`E1`, `E2`, `A`, `v1`, `err1`, `e_lo`, `e_hi`, `fVars`, + `dVars`, `Gamma`] + destruct) + >- (fs[Once validTypes_def, Once validRanges_def]) + \\ qpat_x_assum `validRanges _ _ _ _` mp_tac + \\ qpat_x_assum `validTypes _ _` mp_tac + \\ simp[Once validRanges_def, Once validTypes_def] + \\ rpt $ disch_then strip_assume_tac + \\ imp_res_tac validRanges_single + \\ imp_res_tac meps_0_deterministic \\ rveq + \\ gs[] \\ rveq \\ gs[] + \\ fs[toRExpMap_def] \\ conj_tac \\ rpt strip_tac + >- (qexistsl_tac [`me`, `nF`, ‘0’] \\ fs[] \\ `m' = me` by (irule validTypes_exec \\ rpt (find_exists_tac \\ fs[toRExpMap_def])) - \\ rveq \\ fs[]) - \\ fs[evalUnop_def] - \\ once_rewrite_tac [real_sub] - \\ rewrite_tac [GSYM REAL_NEG_ADD, ABS_NEG, GSYM real_sub] - \\ first_x_assum drule - \\ rpt (disch_then drule) - \\ disch_then assume_tac \\ fs[] - \\ first_x_assum irule \\ asm_exists_tac \\ fs[]) + \\ rveq \\ fs[] \\ conj_tac + >- (irule mTypeToR_pos) + \\ res_tac \\ first_x_assum $ mp_then Any mp_tac distance_gives_iv + \\ gs[contained_def] + \\ disch_then $ qspec_then ‘(e_lo, e_hi)’ mp_tac \\ gs[] + \\ strip_tac \\ irule REAL_LTE_TRANS + \\ qexists_tac ‘FST (widenInterval (e_lo, e_hi) err')’ \\ gs[]) + \\ rveq \\ res_tac + \\ irule validErrorboundCorrectSqrt + \\ qexistsl_tac [‘A’, ‘E1’, ‘E2’, ‘Gamma’, ‘ehi’, ‘elo’, ‘dVars’, ‘e’, + ‘e_hi’, ‘e_lo’, ‘err'’, ‘m’, ‘m1’, ‘v1'’, ‘v1’] + \\ gs[toRExpMap_def] \\ rpt conj_tac + >- (gs[perturb_def, toRExpMap_def, toREval_def] + \\ ‘vR = evalUnop Sqrt v1’ + by ( + inversion `eval_expr E1 _ (Unop Sqrt _) _ _` eval_expr_cases \\ fs[] + \\ Cases_on ‘m1'’ \\ gs[isCompat_def, perturb_def] + \\ imp_res_tac meps_0_deterministic \\ gs[]) + \\ rveq \\ gs[]) + >- simp[Once validErrorbound_def] + \\ irule Unop_sqrt' \\ fsrw_tac [SATISFY_ss] [updDefVars_def] + \\ qexistsl_tac [‘delta'’, ‘m1’, ‘v1'’] \\ gs[] + \\ simp[Once eval_expr_cases] \\ gs[updDefVars_def]) >- (rename1 `Binop op e1 e2` \\ fs[] \\ qpat_x_assum `validErrorbound _ _ _ _` mp_tac \\ simp[Once validErrorbound_eq] \\ strip_tac diff --git a/hol4/IEEE_connectionScript.sml b/hol4/IEEE_connectionScript.sml index 376f9791b94728827851e1141d10ec78f6f8af94..8428a2cf8fbbb0856ab26c829be52e7fa6c1926e 100644 --- a/hol4/IEEE_connectionScript.sml +++ b/hol4/IEEE_connectionScript.sml @@ -33,8 +33,12 @@ Definition eval_expr_float_def: (eval_expr_float (Unop Neg e) E = case eval_expr_float e E of | SOME v => SOME (fp64_negate v) - | _ => NONE) /\ - (eval_expr_float (Unop Inv e) E = NONE) /\ + | _ => NONE) ∧ + (eval_expr_float (Unop Inv e) E = NONE) ∧ + (eval_expr_float (Unop Sqrt e) E = + case eval_expr_float e E of + | SOME v => SOME (fp64_sqrt dmode v) + | _ => NONE) ∧ (eval_expr_float (Binop b e1 e2) E = (case (eval_expr_float e1 E), (eval_expr_float e2 E) of | SOME v1, SOME v2 => @@ -115,6 +119,26 @@ Proof \\ fs[REAL_MUL_RINV] QED +Theorem zero_lt_sign_zero: + 0 < float_to_real fp ⇒ + fp.Sign = 0w +Proof + rpt strip_tac \\ CCONTR_TAC + \\ ‘fp.Sign = 1w’ by (Cases_on ‘fp.Sign’ \\ gs[]) + \\ gs[float_to_real_def] + \\ ‘0 < 0:real’ suffices_by gs[] + \\ irule REAL_LTE_TRANS + \\ asm_exists_tac \\ gs[REAL_MUL_LNEG] + \\ Cases_on ‘fp.Exponent = 0w’ \\ gs[real_div] + >- ( + irule realTheory.REAL_LE_MUL \\ conj_tac + \\ irule realTheory.REAL_LE_MUL \\ gs[] ) + \\ gs[real_div] \\ irule REAL_LE_MUL \\ conj_tac + \\ TRY (irule REAL_LE_MUL \\ gs[]) + \\ irule REAL_LE_ADD \\ conj_tac \\ gs[] + \\ irule REAL_LE_MUL \\ conj_tac \\ gs[] +QED + Theorem pow_simp1[local] = Q.prove (`2 pow 2047 / 2 pow 1023 = 2 pow 1024`, qspecl_then [`2`, `2047`,`1023`] destruct real_div_pow \\ fs[]); @@ -529,7 +553,6 @@ Theorem eval_expr_gives_IEEE: is64BitEval (toRExp e) /\ is64BitEnv Gamma /\ noDowncast (toRExp e) /\ - (* eval_expr_valid e E2 /\ *) (∀v. v ∈ domain dVars ⇒ ∃vF m. @@ -604,6 +627,189 @@ Proof qpat_x_assum ‘validErrorbound _ _ _ _’ (fn thm => mp_tac (ONCE_REWRITE_RULE [validErrorbound_def] thm)) \\ fs[option_case_eq] \\ rpt (TOP_CASE_TAC \\ fs[])) + >- ( + fs[Once validTypes_def] \\ rveq + \\ imp_res_tac validTypes_single + \\ ‘M64 = m1’ + by (qpat_x_assum ‘isCompat m1 _’ mp_tac \\ Cases_on ‘m1’ + \\ simp[isCompat_def]) + \\ rveq + \\ ‘M64 = mG’ + by (qpat_x_assum ‘toRExpMap _ _ = SOME _’ mp_tac + \\ qpat_x_assum ‘FloVerMapTree_find _ _ = SOME mG’ mp_tac + \\ simp[toRExpMap_def]) + \\ ‘me = M64’ + by (qpat_x_assum ‘isCompat me _’ mp_tac \\ rveq \\ Cases_on ‘me’ + \\ simp[isCompat_def]) + \\ rveq \\ fs[isCompat_def] \\ rpt (qpat_x_assum ‘T’ kall_tac) + \\ rveq + \\ fs[eval_expr_float_def] + \\ first_x_assum + (qspecl_then + [`E1`, `E2`, `E2_real`, `Gamma`, `v1`, `A`, `fVars`, `dVars`] + destruct) + >- ( + fs[] \\ rpt conj_tac + >- (fs[Once validTypes_def]) + >- (rveq \\ rpt strip_tac + \\ drule validTypes_single \\ strip_tac \\ rfs[] \\ rveq + \\ first_x_assum irule + \\ find_exists_tac \\ fs[] + \\ asm_exists_tac \\ fs[]) + >- (fs[Once validRanges_def]) + >- ( + qpat_x_assum ‘validErrorbound _ _ _ _’ + (fn thm => assume_tac (ONCE_REWRITE_RULE [validErrorbound_def] thm)) + \\ fs[option_case_eq] + \\ pop_assum mp_tac \\ rpt (TOP_CASE_TAC \\ fs[])) + >- ( + rw_thm_asm `FPRangeValidator _ _ _ _` FPRangeValidator_def + \\ fs[] + \\ Cases_on `FloverMapTree_find (Unop Sqrt (toRExp e)) A` \\ fs[] + \\ PairCases_on `x` \\ fs[] + \\ rw_asm_star `FloverMapTree_find (Unop _ _) Gamma = _`) + >- (rw_thm_asm `domain (usedVars _) DIFF _ SUBSET _` usedVars_def \\ fs[]) + \\ rw_thm_asm `is64BitEval _` is64BitEval_def \\ fs[]) + \\ fs[fp64_sqrt_def, fp64_to_float_float_to_fp64] + \\ qpat_x_assum `validRanges _ _ _ _` mp_tac + \\ simp[Once validRanges_def] \\ rpt strip_tac + \\ imp_res_tac validRanges_single + \\ rename1 ‘FloverMapTree_find (toRExp e) A = SOME (iv1, err1)’ + \\ ‘0 < IVlo iv1’ by (res_tac \\ gs[IVlo_def]) + \\ rename1 ‘IVlo iv1 ≤ vR1’ + (* Obtain evaluation for E2_real*) + \\ ‘!vF1 m1. eval_expr E2_real (toRExpMap Gamma) (toRExp e) vF1 m1 ==> + abs (vR1 - vF1) <= err1’ + by (qspecl_then [`toRExp e`, `E1`, `E2_real`, `A`,`vR1`, + `err1`, `IVlo iv1`, `IVhi iv1`, `fVars`, + `dVars`,`Gamma`] destruct validErrorbound_sound + \\ rpt conj_tac \\ fs[] + >- (fs [DIFF_DEF, SUBSET_DEF] + \\ rpt strip_tac \\ first_x_assum irule + \\ once_rewrite_tac [usedVars_def] \\ fs[domain_union]) + \\ qpat_x_assum ‘validErrorbound _ _ _ _’ + (fn thm => mp_tac (ONCE_REWRITE_RULE [validErrorbound_def] thm)) + \\ fs[option_case_eq] \\ rpt (TOP_CASE_TAC \\ fs[])) + \\ ‘validFloatValue (float_to_real (fp64_to_float v)) M64’ + by (drule FPRangeValidator_sound + \\ disch_then $ qspecl_then [‘toRExp e’, ‘fp64_to_real v’, ‘M64’] mp_tac + \\ gs[] \\ impl_tac + >- (rpt conj_tac + >- (drule eval_eq_env + \\ rpt $ disch_then drule \\ gs[fp64_to_real_def]) + >- ( + qpat_x_assum ‘validErrorbound _ _ _ _’ + (fn thm => mp_tac (ONCE_REWRITE_RULE [validErrorbound_def] thm)) + \\ fs[option_case_eq] \\ rpt (TOP_CASE_TAC \\ fs[])) + >- ( + qpat_x_assum ‘FPRangeValidator _ _ _ _’ + (fn thm => mp_tac (ONCE_REWRITE_RULE [FPRangeValidator_def] thm)) + \\ fs[option_case_eq] \\ rpt (TOP_CASE_TAC \\ fs[])) + \\ fs [DIFF_DEF, SUBSET_DEF] + \\ rpt strip_tac \\ first_x_assum irule + \\ once_rewrite_tac [usedVars_def] \\ fs[domain_union]) + \\ simp[fp64_to_real_def]) + \\ ‘contained (float_to_real (fp64_to_float v)) + (widenInterval (FST iv1, SND iv1) err1)’ + by ( + irule distance_gives_iv + \\ qexists_tac `vR1` \\ fs [contained_def] + \\ first_x_assum irule + \\ qexists_tac `M64` + \\ drule eval_eq_env + \\ rpt (disch_then drule) \\ fs[]) + \\ ‘0 < FST (widenInterval (FST iv1, SND iv1) err1)’ + by ( + qpat_x_assum ‘validErrorbound _ _ _ _’ + (fn thm => mp_tac (ONCE_REWRITE_RULE [validErrorbound_def] thm)) + \\ fs[option_case_eq] \\ rpt (TOP_CASE_TAC \\ fs[])) + \\ ‘0 < float_to_real (fp64_to_float v)’ + by (gs[contained_def, widenInterval_def] \\ irule REAL_LTE_TRANS + \\ asm_exists_tac \\ gs[]) + \\ ‘(fp64_to_float v).Sign = 0w’ + by imp_res_tac zero_lt_sign_zero + \\ ‘validFloatValue (evalUnop Sqrt (float_to_real (fp64_to_float v))) M64’ + by ( + drule FPRangeValidator_sound + \\ disch_then + (qspecl_then + [`Unop Sqrt (toRExp e)`, + `evalUnop Sqrt (float_to_real (fp64_to_float v))`, `M64`] + irule) + \\ fs[] + \\ qexists_tac ‘e’ \\ fs[] + \\ rpt conj_tac + >- (simp[Once validTypes_def, isCompat_def] \\ first_x_assum MATCH_ACCEPT_TAC) + >- (simp[Once validRanges_def] \\ asm_exists_tac \\ fs[] + \\ fs[] \\ rveq \\ fs[]) + \\ irule eval_eq_env + \\ qexists_tac ‘toREnv E2’ \\ rpt conj_tac >- fs[] + \\ irule Unop_sqrt' + \\ qexistsl_tac [‘0’, `M64`, ‘M64’, `float_to_real (fp64_to_float v)`] + \\ fs[perturb_def, evalUnop_def, mTypeToR_pos, isCompat_def]) + \\ qpat_x_assum `validFloatValue (evalUnop _ _) M64` (assume_tac o SIMP_RULE std_ss [validFloatValue_def]) + \\ gs[] + (* normal sqrt *) + >- ( + Q.ISPEC_THEN `(fp64_to_float v):(52,11) float` + impl_subgoal_tac + float_sqrt_relative + >- (rpt conj_tac + \\ fs[validFloatValue_def, + normalTranslatedValue_implies_finiteness, + denormalTranslatedValue_implies_finiteness, + normalValue_implies_normalization, + GSYM float_is_zero_to_real, float_is_finite, evalUnop_def, + normalizes_def]) + \\ fs[dmode_def] \\ simp[Once eval_expr_cases] + \\ qexistsl_tac [`M64`, `float_to_real (fp64_to_float v)`, ‘e'’] + \\ fs[perturb_def, evalUnop_def] + \\ imp_res_tac normal_not_denormal + \\ fs[REAL_INV_1OVER, mTypeToR_def, isCompat_def]) + (* denormal sqrt *) + >- ( + Q.ISPEC_THEN `(fp64_to_float v):(52,11) float` + impl_subgoal_tac + float_sqrt_relative_denorm + >- (rpt conj_tac + >- fs[validFloatValue_def, + normalTranslatedValue_implies_finiteness, + denormalTranslatedValue_implies_finiteness, + normalValue_implies_normalization, float_is_finite, + GSYM float_is_zero_to_real, evalUnop_def] + >- fs[validFloatValue_def, + normalTranslatedValue_implies_finiteness, + denormalTranslatedValue_implies_finiteness, + normalValue_implies_normalization, float_is_finite, + GSYM float_is_zero_to_real, evalUnop_def] + >- ( + fs[normalTranslatedValue_implies_finiteness, + denormalTranslatedValue_implies_finiteness, + normalValue_implies_normalization, float_is_finite, + GSYM float_is_zero_to_real, evalUnop_def, denormal_def, minValue_pos_def] + \\ rewrite_tac [INT_MAX_def, INT_MIN_def, dimindex_11, EVAL “2 ** (11 - 1) - 1 - 1â€] + \\ irule REAL_LT_TRANS + \\ asm_exists_tac \\ fs[GSYM REAL_OF_NUM_POW, minExponentPos_def] + \\ irule REAL_LET_TRANS \\ qexists_tac ‘1 * inv (2 pow 1022)’ + \\ conj_tac + >- (rewrite_tac[real_div] \\ irule REAL_LT_RMUL_IMP \\ fs[]) + \\ fs[]) + >- (irule REAL_LT_TRANS \\ qexists_tac ‘maxValue M64’ + \\ fs[threshold_64_bit_lt_maxValue, denormal_def] + \\ irule REAL_LTE_TRANS \\ qexists_tac ‘minValue_pos M64’ + \\ fs[minValue_pos_def, maxValue_def, GSYM REAL_OF_NUM_POW, evalUnop_def] + \\ irule REAL_LE_TRANS \\ qexists_tac ‘1’ \\ conj_tac + >- (once_rewrite_tac[GSYM REAL_INV1] \\ irule REAL_INV_LE_ANTIMONO_IMPR + \\ fs[POW_2_LE1]) + \\ fs[POW_2_LE1]) + \\ fs[INT_MAX_def, INT_MIN_def, dimindex_11]) + \\ gs[dmode_def] \\ simp[Once eval_expr_cases] + \\ qexistsl_tac [`M64`, `float_to_real (fp64_to_float v)`, ‘e'’] + \\ fs[perturb_def, evalUnop_def] + \\ fs[REAL_INV_1OVER, mTypeToR_def, isCompat_def, minExponentPos_def]) + (* sqrt 0 *) + \\ ‘0 < sqrt (float_to_real (fp64_to_float v))’ by (irule transcTheory.SQRT_POS_LT \\ gs[]) + \\ gs[evalUnop_def]) >- ( rename1 `Binop b (toRExp e1) (toRExp e2)` \\ rveq \\ IMP_RES_TAC validRanges_single @@ -1786,9 +1992,8 @@ Proof \\ rpt conj_tac \\ fs[is64BitBstep_def] QED -val IEEE_connection_expr = store_thm ( - "IEEE_connection_expr", - ``!(e:word64 expr) (A:analysisResult) (P:precond) E1 E2 defVars fVars Gamma. +Theorem IEEE_connection_expr: + !(e:word64 expr) (A:analysisResult) (P:precond) E1 E2 defVars fVars Gamma. is64BitEval (toRExp e) /\ is64BitEnv defVars /\ noDowncast (toRExp e) /\ @@ -1802,7 +2007,8 @@ val IEEE_connection_expr = store_thm ( eval_expr_float e E2 = SOME vF /\ eval_expr (toREnv E2) (toRExpMap Gamma) (toRExp e) (float_to_real (fp64_to_float vF)) M64 /\ - abs (vR - (float_to_real (fp64_to_float vF))) <= err``, + abs (vR - (float_to_real (fp64_to_float vF))) <= err +Proof simp [CertificateChecker_def] \\ rpt strip_tac \\ Cases_on `getValidMap defVars (toRExp e) FloverMapTree_empty` \\ fs[] @@ -1837,11 +2043,11 @@ val IEEE_connection_expr = store_thm ( \\ rveq \\ fs[]) \\ fs[is64BitEnv_def] \\ first_x_assum MATCH_ACCEPT_TAC) \\ rpt (find_exists_tac \\ fs[]) - \\ first_x_assum irule \\ find_exists_tac \\ fs[]); + \\ first_x_assum irule \\ find_exists_tac \\ fs[] +QED -val IEEE_connection_cmds = store_thm ( - "IEEE_connection_cmds", - ``! (f:word64 cmd) (A:analysisResult) (P:precond) E1 E2 defVars (fVars:num_set) +Theorem IEEE_connection_cmds: + ! (f:word64 cmd) (A:analysisResult) (P:precond) E1 E2 defVars (fVars:num_set) Gamma. is64BitBstep (toRCmd f) /\ is64BitEnv defVars /\ @@ -1856,7 +2062,8 @@ val IEEE_connection_cmds = store_thm ( bstep_float f E2 = SOME vF /\ bstep (toRCmd f) (toREnv E2) (toRExpMap Gamma) (float_to_real (fp64_to_float vF)) M64 /\ - abs (vR - (float_to_real (fp64_to_float vF))) <= err``, + abs (vR - (float_to_real (fp64_to_float vF))) <= err +Proof simp [CertificateCheckerCmd_def] \\ rpt strip_tac \\ Cases_on `getValidMapCmd defVars (toRCmd f) FloverMapTree_empty` \\ fs[] @@ -1908,63 +2115,7 @@ val IEEE_connection_cmds = store_thm ( \\ disch_then (qspecl_then [`outVars`, `vR`, `vF2`, `FST iv_e`, `SND iv_e`, `err_e`, `m2`] destruct) - \\ fs[]); - -(** UNUSED: -val normal_or_zero_def = Define ` - normal_or_zero (v:real) = - (minValue_pos M64 <= abs v \/ v = 0)`; - -val isValid_def = Define ` - isValid e = - let trans_e = optionLift e (\ v. SOME (float_to_real (fp64_to_float v))) NONE in - optionLift trans_e normal_or_zero F`; - -val eval_expr_valid_def = Define ` - (eval_expr_valid (Var n) E = T) /\ - (eval_expr_valid (Const m v) E = T) /\ - (eval_expr_valid (Unop u e) E = eval_expr_valid e E) /\ - (eval_expr_valid (Binop b e1 e2) E = - (eval_expr_valid e1 E /\ eval_expr_valid e2 E /\ - let e1_res = eval_expr_float e1 E in - let e2_res = eval_expr_float e2 E in - optionLift (e1_res) - (\ v1. let v1_real = float_to_real (fp64_to_float v1) - in - optionLift e2_res - (\ v2. - let v2_real = float_to_real (fp64_to_float v2) - in - normal_or_zero (evalBinop b v1_real v2_real)) - T) - T)) /\ - (eval_expr_valid (Fma e1 e2 e3) E = - (eval_expr_valid e1 E /\ eval_expr_valid e2 E /\ eval_expr_valid e3 E /\ - let e1_res = eval_expr_float e1 E in - let e2_res = eval_expr_float e2 E in - let e3_res = eval_expr_float e3 E in - optionLift (e1_res) - (\ v1. let v1_real = float_to_real (fp64_to_float v1) - in - optionLift e2_res - (\ v2. - let v2_real = float_to_real (fp64_to_float v2) - in - optionLift e3_res - (\ v3. let v3_real = float_to_real (fp64_to_float v3) in - normal_or_zero (evalFma v1_real v2_real v3_real)) - T) - T) - T)) /\ - (eval_expr_valid (Downcast m e) E = eval_expr_valid e E)`; - -val bstep_valid_def = Define ` - (bstep_valid (Let m x e g) E = - (eval_expr_valid e E /\ - optionLift (eval_expr_float e E) - (\v_e. bstep_valid g (updFlEnv x v_e E)) - T)) /\ - (bstep_valid (Ret e) E = eval_expr_valid e E)`; -*) + \\ fs[] +QED val _ = export_theory (); diff --git a/hol4/IntervalArithScript.sml b/hol4/IntervalArithScript.sml index 9757d1ad4acc4a5818666b38ff99465f2ba051f8..3419d12a6a7c2a008da83c8ef66e6422c34915eb 100644 --- a/hol4/IntervalArithScript.sml +++ b/hol4/IntervalArithScript.sml @@ -92,6 +92,10 @@ Definition invertInterval_def: invertInterval (iv:interval) = (1 /(IVhi iv), 1 /(IVlo iv)) End +Definition sqrtInterval_def: + sqrtInterval (iv:interval) = (sqrt (IVlo iv), sqrt (IVhi iv)) +End + Definition addInterval_def: addInterval (iv1:interval) (iv2:interval) = absIntvUpd (+) iv1 iv2 End @@ -271,6 +275,14 @@ Proof \\ asm_exists_tac \\ fs [] QED +Theorem iv_sqrt_preserves_valid: + ∀ iv. + 0 ≤ IVlo iv ∧ valid iv ⇒ valid (sqrtInterval iv) +Proof + gs[valid_def, sqrtInterval_def] \\ rpt strip_tac + \\ irule transcTheory.SQRT_MONO_LE \\ gs[] +QED + val interval_addition_valid = store_thm ("interval_addition_valid", ``!iv1 iv2. validIntervalAdd iv1 iv2 (addInterval iv1 iv2)``, fs iv_ss \\ rpt strip_tac diff --git a/hol4/IntervalValidationScript.sml b/hol4/IntervalValidationScript.sml index 8b42fa98d5771d1690958c0c137448149cf050c8..62c342676294460b3886a42adfa202c8520af23d 100644 --- a/hol4/IntervalValidationScript.sml +++ b/hol4/IntervalValidationScript.sml @@ -10,7 +10,7 @@ open simpLib realTheory realLib RealArith pred_setTheory sptreeTheory open AbbrevsTheory ExpressionsTheory RealSimpsTheory FloverTactics ExpressionAbbrevsTheory IntervalArithTheory CommandsTheory ssaPrgsTheory MachineTypeTheory FloverMapTheory TypeValidatorTheory RealRangeArithTheory - ExpressionSemanticsTheory; + ExpressionSemanticsTheory sqrtApproxTheory; open preambleFloVer; val _ = new_theory "IntervalValidation"; @@ -22,78 +22,90 @@ val _ = temp_overload_on("abs",``real$abs``); val _ = temp_overload_on("max",``real$max``); val _ = temp_overload_on("min",``real$min``); +(** Define a global iteration count for square roots **) +Definition ITERCOUNT_def: + (ITERCOUNT:num) = 4 +End + Definition validIntervalbounds_def: validIntervalbounds f (absenv:analysisResult) (P:precond) (validVars:num_set) = case (FloverMapTree_find f absenv) of - | SOME (intv, _) => - (case f of - | Var v => - if (lookup v validVars = SOME ()) - then T - else (isSupersetInterval (P v) intv /\ IVlo (P v) <= IVhi (P v)) - | Const m n => isSupersetInterval (n,n) intv - | Unop op f1 => - (case (FloverMapTree_find f1 absenv) of - | SOME (iv, _) => - (if validIntervalbounds f1 absenv P validVars - then - case op of - | Neg => - let new_iv = negateInterval iv in - isSupersetInterval new_iv intv - | Inv => - if IVhi iv < 0 \/ 0 < IVlo iv - then - let new_iv = invertInterval iv in - isSupersetInterval new_iv intv - else - F - else F) - | _ => F) - | Downcast m f1 => - (case (FloverMapTree_find f1 absenv) of - | SOME (iv1, _) => - (if (validIntervalbounds f1 absenv P validVars) then - ((isSupersetInterval intv iv1) /\ (isSupersetInterval iv1 intv)) - else F) - | _ => F) - | Binop op f1 f2 => - (if (validIntervalbounds f1 absenv P validVars /\ - validIntervalbounds f2 absenv P validVars) - then - (case (FloverMapTree_find f1 absenv, FloverMapTree_find f2 absenv) of - | (SOME (iv1, _), SOME (iv2, _)) => - (case op of - | Plus => - let new_iv = addInterval iv1 iv2 in - isSupersetInterval new_iv intv - | Sub => - let new_iv = subtractInterval iv1 iv2 in - isSupersetInterval new_iv intv - | Mult => - let new_iv = multInterval iv1 iv2 in - isSupersetInterval new_iv intv - | Div => - if (IVhi iv2 < 0 \/ 0 < IVlo iv2) - then - let new_iv = divideInterval iv1 iv2 in - isSupersetInterval new_iv intv - else F) - | _ => F) - else F) - | Fma f1 f2 f3 => - (if (validIntervalbounds f1 absenv P validVars /\ - validIntervalbounds f2 absenv P validVars /\ - validIntervalbounds f3 absenv P validVars) - then - case FloverMapTree_find f1 absenv, FloverMapTree_find f2 absenv, - FloverMapTree_find f3 absenv of - | SOME (iv1, _), SOME (iv2, _), SOME (iv3, _) => - let new_iv = addInterval (multInterval iv1 iv2) iv3 in + | SOME (intv, _) => + (case f of + | Var v => + if (lookup v validVars = SOME ()) + then T + else (isSupersetInterval (P v) intv /\ IVlo (P v) <= IVhi (P v)) + | Const m n => isSupersetInterval (n,n) intv + | Unop op f1 => + (case (FloverMapTree_find f1 absenv) of + | SOME (iv, _) => + (if validIntervalbounds f1 absenv P validVars then + case op of + | Neg => + let new_iv = negateInterval iv in + isSupersetInterval new_iv intv + | Inv => + if IVhi iv < 0 \/ 0 < IVlo iv then + let new_iv = invertInterval iv in + isSupersetInterval new_iv intv + else F + (* Sqrt is transcendental -> We cannot directly compute it + thus we do a newton approximation of the lower and upper bounds *) + | Sqrt => + if 0 < IVlo iv then + let sqrtLo = newton ITERCOUNT (IVlo iv * 0.99) (IVlo iv * 0.99); + sqrtHi = newton ITERCOUNT (IVhi iv * 1.01) (IVhi iv * 1.01); + new_iv = (sqrtLo, sqrtHi) + in + if (validate_newton_down sqrtLo (IVlo iv) ∧ + validate_newton_up sqrtHi (IVhi iv)) then isSupersetInterval new_iv intv - | _, _, _ => F - else F)) - | _ => F + else F + else F + else F) + | _ => F) + | Downcast m f1 => + (case (FloverMapTree_find f1 absenv) of + | SOME (iv1, _) => + (if (validIntervalbounds f1 absenv P validVars) then + ((isSupersetInterval intv iv1) /\ (isSupersetInterval iv1 intv)) + else F) + | _ => F) + | Binop op f1 f2 => + (if (validIntervalbounds f1 absenv P validVars /\ + validIntervalbounds f2 absenv P validVars) then + (case (FloverMapTree_find f1 absenv, FloverMapTree_find f2 absenv) of + | (SOME (iv1, _), SOME (iv2, _)) => + (case op of + | Plus => + let new_iv = addInterval iv1 iv2 in + isSupersetInterval new_iv intv + | Sub => + let new_iv = subtractInterval iv1 iv2 in + isSupersetInterval new_iv intv + | Mult => + let new_iv = multInterval iv1 iv2 in + isSupersetInterval new_iv intv + | Div => + if (IVhi iv2 < 0 \/ 0 < IVlo iv2) then + let new_iv = divideInterval iv1 iv2 in + isSupersetInterval new_iv intv + else F) + | _ => F) + else F) + | Fma f1 f2 f3 => + (if (validIntervalbounds f1 absenv P validVars /\ + validIntervalbounds f2 absenv P validVars /\ + validIntervalbounds f3 absenv P validVars) then + case FloverMapTree_find f1 absenv, FloverMapTree_find f2 absenv, + FloverMapTree_find f3 absenv of + | SOME (iv1, _), SOME (iv2, _), SOME (iv3, _) => + let new_iv = addInterval (multInterval iv1 iv2) iv3 in + isSupersetInterval new_iv intv + | _, _, _ => F + else F)) + | _ => F End Theorem validIntervalbounds_eq = @@ -127,8 +139,34 @@ val real_prove = \\ rpt (qpat_x_assum `_ ==> ! x. _` kall_tac) \\ REAL_ASM_ARITH_TAC; +Theorem newton_method_pos: + ∀ x m. + 0 ≤ m ∧ + 0 ≤ x ⇒ 0 ≤ newton n x m +Proof + Induct_on ‘n’ >> gs[newton_def] + >> rpt strip_tac + >> first_x_assum irule >> rewrite_tac[real_div] >> gs[] + >> irule REAL_LE_MUL >> gs[] + >> irule REAL_LE_ADD >> gs[] + >> irule REAL_LE_MUL >> gs[] +QED + +Theorem newton_method_lt_pos: + ∀ x m. + 0 < m ∧ + 0 < x ⇒ 0 < newton n m x +Proof + Induct_on ‘n’ >> gs[newton_def] + >> rpt strip_tac + >> first_x_assum irule >> rewrite_tac[real_div] >> gs[] + >> irule REAL_LT_ADD >> gs[] + >> irule REAL_LT_MUL >> gs[nonzerop_def] + >> COND_CASES_TAC >> gs[] +QED + Theorem validIntervalbounds_sound: - !(f:real expr) (A:analysisResult) (P:precond) (fVars:num_set) + ∀ (f:real expr) (A:analysisResult) (P:precond) (fVars:num_set) (dVars:num_set) E Gamma. validIntervalbounds f A P dVars /\ (* The checker succeeded *) (* All defined vars have already been analyzed *) @@ -176,7 +214,7 @@ Proof (qspecl_then [`A`, `P`, `fVars`, `dVars`, `E`, `Gamma`] destruct) \\ fs[] \\ rveq \\ IMP_RES_TAC validRanges_single - \\ simp[Once validRanges_def] \\ Cases_on `u` + \\ simp[Once validRanges_def] \\ Cases_on `u` \\ simp[] (* Negation case *) >- (qexists_tac `- vR` \\ fs[negateInterval_def, isSupersetInterval_def] \\ rveq \\ Cases_on `iv` \\ fs[] @@ -184,30 +222,72 @@ Proof \\ irule Unop_neg' \\ qexistsl_tac [`REAL`, `REAL`, `vR`] \\ fs[evalUnop_def, isCompat_def, toRTMap_def]) (* Inversion case *) - \\ qexists_tac `1 / vR` - \\ conj_tac - >- (simp[toREval_def] - \\ irule Unop_inv' \\ qexistsl_tac [`0`, `REAL`, `REAL`, `vR`] - \\ simp[evalUnop_def, mTypeToR_def, perturb_def, REAL_INV_1OVER, - mTypeToR_pos, isCompat_def, toRTMap_def] - \\ CCONTR_TAC \\ fs[] \\ rveq - \\ `0 < 0:real` by (real_prove) - \\ fs[]) + >- ( + qexists_tac `1 / vR` + \\ conj_tac + >- ( + simp[toREval_def] + \\ irule Unop_inv' \\ gs[] \\ qexistsl_tac [`0`, `REAL`, `vR`] + \\ simp[evalUnop_def, mTypeToR_def, perturb_def, REAL_INV_1OVER, + mTypeToR_pos, isCompat_def, toRTMap_def] + \\ CCONTR_TAC \\ fs[] \\ rveq + \\ `0 < 0:real` by (real_prove) + \\ fs[]) + \\ conj_tac + \\ fs[invertInterval_def, isSupersetInterval_def] \\ rveq + \\ Cases_on `iv` \\ fs[] + >- (irule REAL_LE_TRANS \\ qexists_tac `1 / r` \\ conj_tac \\ fs[] + \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPL \\ fs[] + \\ real_prove) + >- (irule REAL_LE_TRANS \\ qexists_tac `1 / r` \\ conj_tac \\ fs[] + \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPR \\ fs[] + \\ real_prove) + >- (irule REAL_LE_TRANS \\ qexists_tac `1 / q` \\ conj_tac \\ fs[] + \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPL \\ fs[] + \\ real_prove) + \\ irule REAL_LE_TRANS \\ qexists_tac `1/q` \\ conj_tac \\ fs[] + \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPR \\ fs[] + \\ real_prove) + (* Sqrt case *) + \\ conj_tac >- gs[] + \\ qexists_tac `sqrt vR` \\ conj_tac - \\ fs[invertInterval_def, isSupersetInterval_def] \\ rveq - \\ Cases_on `iv` \\ fs[] - >- (irule REAL_LE_TRANS \\ qexists_tac `1 / r` \\ conj_tac \\ fs[] - \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPL \\ fs[] - \\ real_prove) - >- (irule REAL_LE_TRANS \\ qexists_tac `1 / r` \\ conj_tac \\ fs[] - \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPR \\ fs[] + >- ( + simp[toREval_def] + \\ irule Unop_sqrt' \\ gs[] \\ qexistsl_tac [`0`, `REAL`, `vR`] + \\ simp[evalUnop_def, mTypeToR_def, perturb_def, REAL_INV_1OVER, + mTypeToR_pos, isCompat_def, toRTMap_def] + \\ CCONTR_TAC \\ fs[] \\ rveq + \\ `0 < 0:real` by (real_prove) + \\ fs[]) + \\ gs[] \\ rveq + \\ qpat_x_assum `validate_newton_down _ _` $ mp_then Any mp_tac validate_newton_lb_valid + \\ impl_tac + >- (conj_tac + >- (irule newton_method_pos \\ conj_tac \\ irule REAL_LE_MUL \\ gs[] \\ real_prove) \\ real_prove) - >- (irule REAL_LE_TRANS \\ qexists_tac `1 / q` \\ conj_tac \\ fs[] - \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPL \\ fs[] + \\ strip_tac + \\ ‘0 < SND iv ’ + by ( + irule REAL_LTE_TRANS \\ qexists_tac ‘FST iv’ \\ gs[] + \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[]) + \\ qpat_x_assum `validate_newton_up _ _` $ mp_then Any mp_tac validate_newton_ub_valid + \\ impl_tac + >- (conj_tac + >- (irule newton_method_pos \\ conj_tac \\ irule REAL_LE_MUL \\ gs[] \\ real_prove) \\ real_prove) - \\ irule REAL_LE_TRANS \\ qexists_tac `1/q` \\ conj_tac \\ fs[] - \\ fs[GSYM REAL_INV_1OVER] \\ irule REAL_INV_LE_ANTIMONO_IMPR \\ fs[] - \\ real_prove) + \\ strip_tac + \\ conj_tac + \\ fs[isSupersetInterval_def] \\ rveq + >- ( + irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] + \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] + \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ irule REAL_LE_TRANS \\ qexists_tac ‘sqrt (SND iv)’ \\ conj_tac + >- ( + irule transcTheory.SQRT_MONO_LE \\ gs[] + \\ irule REAL_LE_TRANS \\ qexists_tac ‘FST iv’ \\ real_prove) + \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[]) (* Binary operator case *) >- (rename1 `Binop b f1 f2` \\ simp[Once validRanges_def, toREval_def] \\ rw_thm_asm `validTypes _ _` validTypes_def \\ fs[] @@ -457,7 +537,29 @@ Proof \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ fs[] \\ irule REAL_LE_TRANS - \\ find_exists_tac \\ fs[invertInterval_def])) + \\ find_exists_tac \\ fs[invertInterval_def]) + \\ gs[valid_def, isSupersetInterval_def] + \\ irule REAL_LE_TRANS + \\ asm_exists_tac \\ gs[] + \\ irule REAL_LE_TRANS \\ once_rewrite_tac [CONJ_COMM] + \\ asm_exists_tac \\ gs[] + \\ qpat_x_assum `validate_newton_down _ _` $ mp_then Any mp_tac validate_newton_lb_valid + \\ impl_tac + >- (conj_tac + >- (irule newton_method_pos \\ conj_tac \\ irule REAL_LE_MUL \\ gs[] \\ real_prove) + \\ real_prove) + \\ strip_tac + \\ ‘0 < SND iv ’ + by (irule REAL_LTE_TRANS \\ qexists_tac ‘FST iv’ \\ gs[]) + \\ qpat_x_assum `validate_newton_up _ _` $ mp_then Any mp_tac validate_newton_ub_valid + \\ impl_tac + >- (conj_tac + >- (irule newton_method_pos \\ conj_tac \\ irule REAL_LE_MUL \\ gs[] \\ real_prove) + \\ real_prove) + \\ strip_tac + \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] + \\ irule REAL_LE_TRANS \\ qexists_tac ‘sqrt(SND iv)’\\ gs[] + \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) >- (rename1 `Binop b f1 f2` \\ rpt (first_x_assum (qspecl_then [`A`, `P`, `dVars`] destruct) \\ fs[]) \\ rveq \\ fs[] diff --git a/hol4/RealIntervalInferenceScript.sml b/hol4/RealIntervalInferenceScript.sml index aea0e78cb8e534fe8f687789559e89b69fe2c7fd..ae49afea261295f055dfd8ef6c3409fbb7814d30 100644 --- a/hol4/RealIntervalInferenceScript.sml +++ b/hol4/RealIntervalInferenceScript.sml @@ -6,7 +6,7 @@ open simpLib realTheory realLib RealArith; open AbbrevsTheory ExpressionsTheory RealSimpsTheory FloverTactics ExpressionAbbrevsTheory IntervalArithTheory CommandsTheory ssaPrgsTheory MachineTypeTheory FloverMapTheory TypeValidatorTheory RealRangeArithTheory - ExpressionSemanticsTheory; + ExpressionSemanticsTheory sqrtApproxTheory; open preambleFloVer; val _ = new_theory "RealIntervalInference"; @@ -15,6 +15,10 @@ val _ = monadsyntax.enable_monadsyntax(); val _ = List.app monadsyntax.enable_monad ["option"]; val _ = type_abbrev ("ivMap", ``:(real # real) fMap``); +Definition ITERCOUNT_def: + ITERCOUNT = 4:num +End + (** Unverified, trusted inferencer for interval bounds on expressions **) Definition inferIntervalbounds_def: inferIntervalbounds e (P:precond) (akk:ivMap) :ivMap option = @@ -33,6 +37,12 @@ Definition inferIntervalbounds_def: case op of | Neg => SOME (FloverMapTree_insert e (negateInterval iv_e1) recRes) + | Sqrt => + let sqrtLo = newton ITERCOUNT (IVlo iv_e1 * 0.99) (IVlo iv_e1 * 0.99); + sqrtHi = newton ITERCOUNT (IVhi iv_e1 * 1.01) (IVhi iv_e1 * 1.01); + new_iv = (sqrtLo, sqrtHi); + in + SOME (FloverMapTree_insert e new_iv recRes) | _ => NONE od | Downcast m e1 => diff --git a/hol4/RealRangeArithScript.sml b/hol4/RealRangeArithScript.sml index e365b97bf2ddaab6432fc5caee29291a43c34cd9..0c68021cd384ad965b86151630acb9f068f68915 100644 --- a/hol4/RealRangeArithScript.sml +++ b/hol4/RealRangeArithScript.sml @@ -24,7 +24,12 @@ val validRanges_def = Define ` ((case e of | Var x => T | Const m v => T - | Unop u e1 => validRanges e1 A E Gamma + | Unop u e1 => + (u = Sqrt ==> + (! iv1 err. + FloverMapTree_find e1 A = SOME (iv1, err) ==> + (0 < IVlo iv1))) /\ + validRanges e1 A E Gamma | Binop b e1 e2 => (b = Div ==> (! iv2 err. diff --git a/hol4/semantics/ExpressionSemanticsScript.sml b/hol4/semantics/ExpressionSemanticsScript.sml index c88abbdc8b4be4e2bc509e9519855fb9768321c9..d2db65dcfdaddd0d771e426ed0a0e26fee87eda5 100644 --- a/hol4/semantics/ExpressionSemanticsScript.sml +++ b/hol4/semantics/ExpressionSemanticsScript.sml @@ -43,13 +43,21 @@ Inductive eval_expr: isCompat m mN /\ eval_expr E Gamma f1 v1 m ==> eval_expr E Gamma (Unop Neg f1) (evalUnop Neg v1) mN) /\ - (!E Gamma m mN f1 v1 delta. - Gamma (Unop Inv f1) = SOME mN /\ - isCompat m mN /\ + (!E Gamma m m1 f1 v1 delta. + Gamma (Unop Inv f1) = SOME m /\ + isCompat m1 m /\ abs delta <= (mTypeToR m) (evalUnop Inv v1) /\ - eval_expr E Gamma f1 v1 m /\ + eval_expr E Gamma f1 v1 m1 /\ (v1 <> 0) ==> - eval_expr E Gamma (Unop Inv f1) (perturb (evalUnop Inv v1) m delta) mN) /\ + eval_expr E Gamma (Unop Inv f1) (perturb (evalUnop Inv v1) m delta) m) /\ + (!E Gamma m m1 f1 v1 delta. + Gamma (Unop Sqrt f1) = SOME m /\ + isCompat m1 m /\ + abs delta <= (mTypeToR m) (evalUnop Sqrt v1) /\ + eval_expr E Gamma f1 v1 m1 /\ + (* leq would be fine here, but IEEE semantics are currently broken, thus we need lt *) + (0 < v1) ==> + eval_expr E Gamma (Unop Sqrt f1) (perturb (evalUnop Sqrt v1) m delta) m) /\ (!E Gamma m m1 f1 v1 delta. Gamma (Downcast m f1) = SOME m /\ isMorePrecise m1 m /\ @@ -89,8 +97,8 @@ Theorem eval_expr_cases = ``eval_expr E Gamma (Downcast m1 e1) res m2``] |> LIST_CONJ |> curry save_thm "eval_expr_cases"; -val [Var_load, Const_dist, Unop_neg, Unop_inv, Downcast_dist, Binop_dist, Fma_dist] = - CONJ_LIST 7 eval_expr_rules; +val [Var_load, Const_dist, Unop_neg, Unop_inv, Unop_sqrt, Downcast_dist, Binop_dist, Fma_dist] = + CONJ_LIST 8 eval_expr_rules; Theorem Var_load = Var_load Theorem Const_dist = Const_dist @@ -127,17 +135,33 @@ Proof QED Theorem Unop_inv': - ∀ m f1 v1 delta v m' mN E Gamma fBits. + ∀ m f1 v1 delta v mN m1 E Gamma fBits. (abs delta) <= mTypeToR m (evalUnop Inv v1) /\ - eval_expr E Gamma f1 v1 m /\ + eval_expr E Gamma f1 v1 m1 /\ (v1 <> 0) /\ v = perturb (evalUnop Inv v1) m delta /\ Gamma (Unop Inv f1) = SOME mN /\ - isCompat m mN /\ - m' = mN ==> - eval_expr E Gamma (Unop Inv f1) v m' + isCompat m1 mN /\ + m = mN ==> + eval_expr E Gamma (Unop Inv f1) v m Proof rpt strip_tac \\ rveq \\ irule Unop_inv \\ fs[] + \\ asm_exists_tac \\ gs[] +QED + +Theorem Unop_sqrt': + ∀ m f1 v1 delta v m1 mN E Gamma fBits. + (abs delta) <= mTypeToR m (evalUnop Sqrt v1) /\ + eval_expr E Gamma f1 v1 m1 /\ + (0 < v1) /\ + v = perturb (evalUnop Sqrt v1) mN delta /\ + Gamma (Unop Sqrt f1) = SOME mN /\ + isCompat m1 mN /\ + m = mN ==> + eval_expr E Gamma (Unop Sqrt f1) v m +Proof + rpt strip_tac \\ rveq \\ irule Unop_sqrt \\ fs[] + \\ asm_exists_tac \\ gs[] QED Theorem Downcast_dist': @@ -307,7 +331,10 @@ Proof >- (qexists_tac `delta` \\ fs[]) >- (rveq \\ qexistsl_tac [`m'`, `v1`] \\ fs[] \\ first_x_assum drule \\ disch_then irule \\ fs[]) - >- (rveq \\ qexistsl_tac [`m'`, `v1`] \\ fs[] + >- (rveq \\ qexistsl_tac [`m1`, `v1`] \\ fs[] + \\ qexists_tac `delta` \\ fs[] + \\ first_x_assum drule \\ disch_then irule \\ fs[]) + >- (rveq \\ qexistsl_tac [`m1`, `v1`] \\ fs[] \\ qexists_tac `delta` \\ fs[] \\ first_x_assum drule \\ disch_then irule \\ fs[]) >- (rveq \\ qexistsl_tac [`m1`, `m2`, `v1`, `v2`, `delta`] diff --git a/hol4/semantics/ExpressionsScript.sml b/hol4/semantics/ExpressionsScript.sml index 6bda980183f9395af350ab430b9a165af436bc4c..0283cdbedfe9e217bc23ed2c60140098a8a92a53 100644 --- a/hol4/semantics/ExpressionsScript.sml +++ b/hol4/semantics/ExpressionsScript.sml @@ -30,54 +30,60 @@ Expressions will use unary operators. Define them first **) val _ = Datatype ` - unop = Neg | Inv` + unop = Neg | Inv | Sqrt` (** Define evaluation for unary operators on reals. Errors are added in the exprression evaluation level later **) -val evalUnop_def = Define ` - evalUnop Neg v = - v /\ - evalUnop Inv v = inv(v:real)` +Definition evalUnop_def: + evalUnop Neg v = - v ∧ + evalUnop Inv v = inv(v:real) ∧ + evalUnop Sqrt v = sqrt v +End (** Define Expressions parametric over some value type 'v. Will ease reasoning about different instantiations later. **) -val _ = Datatype ` +Datatype: expr = Var num | Const mType 'v | Unop unop expr | Binop binop expr expr | Fma expr expr expr - | Downcast mType expr` + | Downcast mType expr +End (** Define evaluation of FMA (fused multiply-add) on reals Errors are added on the exprression evaluation level later **) -val evalFma_def = Define ` - evalFma v1 v2 v3 = evalBinop Plus (evalBinop Mult v1 v2) v3`; +Definition evalFma_def: + evalFma v1 v2 v3 = evalBinop Plus (evalBinop Mult v1 v2) v3 +End -val toREval_def = Define ` +Definition toREval_def: (toREval (Var n) = Var n) /\ (toREval (Const m n) = Const REAL n) /\ (toREval (Unop u e1) = Unop u (toREval e1)) /\ (toREval (Binop b e1 e2) = Binop b (toREval e1) (toREval e2)) /\ (toREval (Fma e1 e2 e3) = Fma (toREval e1) (toREval e2) (toREval e3)) /\ - (toREval (Downcast m e1) = toREval e1)`; + (toREval (Downcast m e1) = toREval e1) +End -val toRMap_def = Define ` +Definition toRMap_def: toRMap (d:num -> mType option) (n:num) : mType option = case d n of | SOME m => SOME REAL - | NONE => NONE`; + | NONE => NONE +End (** Define the set of "used" variables of an exprression to be the set of variables occuring in it **) -val usedVars_def = Define ` +Definition usedVars_def: usedVars (e: 'a expr) :num_set = case e of | Var x => insert x () (LN) @@ -85,7 +91,8 @@ val usedVars_def = Define ` | Binop b e1 e2 => union (usedVars e1) (usedVars e2) | Fma e1 e2 e3 => union (usedVars e1) (union (usedVars e2) (usedVars e3)) | Downcast m e1 => usedVars e1 - | _ => LN`; + | _ => LN +End (* (** *) (* Analogous lemma for unary exprressions *) diff --git a/hol4/sqrtApproxScript.sml b/hol4/sqrtApproxScript.sml new file mode 100644 index 0000000000000000000000000000000000000000..847d6360b6712ad38e55cb1deb0e25213a3d7c22 --- /dev/null +++ b/hol4/sqrtApproxScript.sml @@ -0,0 +1,61 @@ +open transcTheory realTheory realLib RealArith bossLib derivativeTheory; +open preambleFloVer; + +val _ = new_theory "sqrtApprox"; + +(* +Definition newton_helper_def: + newton_helper 0 n (x:real) = x ∧ + newton_helper (SUC n) (init:real) x = newton_helper n init ((x + (init / x)) / 2) +End + +Definition newton_def: + newton (n:num) (x:real) = newton_helper n x x +End + +Definition newton_def: + newton 0 n (x:real) = x ∧ + newton (SUC n) m x = newton n m ((x + (&m / x)) / 2) +End +*) + +Definition newton_def: + newton 0 n (x:real) = x ∧ + newton (SUC n) (m:real) x = newton n m ((x + (m / x)) / 2) +End + +Definition validate_newton_down_def: + validate_newton_down estimate lb ⇔ (estimate pow 2) ≤ lb +End + +Theorem validate_newton_lb_valid: + 0 ≤ estimate ∧ + 0 ≤ lb ∧ + validate_newton_down estimate lb ⇒ + estimate ≤ sqrt lb +Proof + rw[validate_newton_down_def] + >> qspecl_then [‘estimate pow 2’, ‘estimate’] mp_tac SQRT_POS_UNIQ + >> impl_tac >- gs[POW_POS] + >> disch_then $ once_rewrite_tac o single o GSYM + >> irule SQRT_MONO_LE >> gs[POW_POS] +QED + +Definition validate_newton_up_def: + validate_newton_up estimate ub ⇔ ub ≤ (estimate pow 2) +End + +Theorem validate_newton_ub_valid: + 0 ≤ estimate ∧ + 0 ≤ ub ∧ + validate_newton_up estimate ub ⇒ + sqrt ub ≤ estimate +Proof + rw[validate_newton_up_def] + >> qspecl_then [‘estimate pow 2’, ‘estimate’] mp_tac SQRT_POS_UNIQ + >> impl_tac >- gs[POW_POS] + >> disch_then $ once_rewrite_tac o single o GSYM + >> irule SQRT_MONO_LE >> gs[POW_POS] +QED + +val _ = export_theory();