From 1dc9cf42af4cc325ad5c8bb94abd6ad71b5179ff Mon Sep 17 00:00:00 2001 From: Heiko Becker <hbecker@mpi-sws.org> Date: Tue, 4 Jan 2022 07:47:05 +0100 Subject: [PATCH] Fixes to make FloVer compile with latest HOL --- hol4/ErrorValidationScript.sml | 9 ++++++--- hol4/IEEE_connectionScript.sml | 2 +- hol4/IntervalArithScript.sml | 2 +- hol4/IntervalValidationScript.sml | 6 +++--- hol4/sqrtApproxScript.sml | 16 ---------------- 5 files changed, 11 insertions(+), 24 deletions(-) diff --git a/hol4/ErrorValidationScript.sml b/hol4/ErrorValidationScript.sml index 7bd665a8..49dc7816 100644 --- a/hol4/ErrorValidationScript.sml +++ b/hol4/ErrorValidationScript.sml @@ -2323,9 +2323,9 @@ Proof \\ irule computeError_up \\ irule contained_leq_maxAbs \\ gs[contained_def] \\ conj_tac \\ irule REAL_LE_TRANS - >- (asm_exists_tac \\ gs[] \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + >- (asm_exists_tac \\ gs[] \\ irule SQRT_MONO_LE \\ real_prove) \\ once_rewrite_tac[CONJ_COMM] \\ asm_exists_tac \\ gs[] - \\ irule transcTheory.SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC + \\ irule SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC QED (** @@ -2440,7 +2440,10 @@ Proof by ( inversion `eval_expr E1 _ (Unop Sqrt _) _ _` eval_expr_cases \\ fs[] \\ Cases_on ‘m1'’ \\ gs[isCompat_def, perturb_def] - \\ imp_res_tac meps_0_deterministic \\ gs[]) + \\ ‘v1'' = v1’ suffices_by gs[] + \\ irule meps_0_deterministic + \\ qexistsl_tac [‘E1’, ‘λ e. FloverMapTree_find e Gamma’, ‘e’] + \\ gs[]) \\ rveq \\ gs[]) >- simp[Once validErrorbound_def] \\ irule Unop_sqrt' \\ fsrw_tac [SATISFY_ss] [updDefVars_def] diff --git a/hol4/IEEE_connectionScript.sml b/hol4/IEEE_connectionScript.sml index 8428a2cf..e966341a 100644 --- a/hol4/IEEE_connectionScript.sml +++ b/hol4/IEEE_connectionScript.sml @@ -808,7 +808,7 @@ Proof \\ fs[perturb_def, evalUnop_def] \\ fs[REAL_INV_1OVER, mTypeToR_def, isCompat_def, minExponentPos_def]) (* sqrt 0 *) - \\ ‘0 < sqrt (float_to_real (fp64_to_float v))’ by (irule transcTheory.SQRT_POS_LT \\ gs[]) + \\ ‘0 < sqrt (float_to_real (fp64_to_float v))’ by (irule SQRT_POS_LT \\ gs[]) \\ gs[evalUnop_def]) >- ( rename1 `Binop b (toRExp e1) (toRExp e2)` \\ rveq diff --git a/hol4/IntervalArithScript.sml b/hol4/IntervalArithScript.sml index 3419d12a..7dd1cce4 100644 --- a/hol4/IntervalArithScript.sml +++ b/hol4/IntervalArithScript.sml @@ -280,7 +280,7 @@ Theorem iv_sqrt_preserves_valid: 0 ≤ IVlo iv ∧ valid iv ⇒ valid (sqrtInterval iv) Proof gs[valid_def, sqrtInterval_def] \\ rpt strip_tac - \\ irule transcTheory.SQRT_MONO_LE \\ gs[] + \\ irule SQRT_MONO_LE \\ gs[] QED val interval_addition_valid = store_thm ("interval_addition_valid", diff --git a/hol4/IntervalValidationScript.sml b/hol4/IntervalValidationScript.sml index 62c34267..74652b56 100644 --- a/hol4/IntervalValidationScript.sml +++ b/hol4/IntervalValidationScript.sml @@ -282,10 +282,10 @@ Proof >- ( irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] - \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ irule SQRT_MONO_LE \\ real_prove) \\ irule REAL_LE_TRANS \\ qexists_tac ‘sqrt (SND iv)’ \\ conj_tac >- ( - irule transcTheory.SQRT_MONO_LE \\ gs[] + irule SQRT_MONO_LE \\ gs[] \\ irule REAL_LE_TRANS \\ qexists_tac ‘FST iv’ \\ real_prove) \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[]) (* Binary operator case *) @@ -559,7 +559,7 @@ Proof \\ strip_tac \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] \\ irule REAL_LE_TRANS \\ qexists_tac ‘sqrt(SND iv)’\\ gs[] - \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ irule SQRT_MONO_LE \\ real_prove) >- (rename1 `Binop b f1 f2` \\ rpt (first_x_assum (qspecl_then [`A`, `P`, `dVars`] destruct) \\ fs[]) \\ rveq \\ fs[] diff --git a/hol4/sqrtApproxScript.sml b/hol4/sqrtApproxScript.sml index cec97a19..d15f2768 100644 --- a/hol4/sqrtApproxScript.sml +++ b/hol4/sqrtApproxScript.sml @@ -3,22 +3,6 @@ open preambleFloVer; val _ = new_theory "sqrtApprox"; -(* -Definition newton_helper_def: - newton_helper 0 n (x:real) = x ∧ - newton_helper (SUC n) (init:real) x = newton_helper n init ((x + (init / x)) / 2) -End - -Definition newton_def: - newton (n:num) (x:real) = newton_helper n x x -End - -Definition newton_def: - newton 0 n (x:real) = x ∧ - newton (SUC n) m x = newton n m ((x + (&m / x)) / 2) -End -*) - Definition newton_def: newton 0 n (x:real) = x ∧ newton (SUC n) (m:real) x = newton n m ((x + (m / x)) / 2) -- GitLab