diff --git a/hol4/ErrorValidationScript.sml b/hol4/ErrorValidationScript.sml index 7bd665a803240ec0122456a22b1119b2e49b7031..49dc781630440f36a47cc1af21743693b9b4aad1 100644 --- a/hol4/ErrorValidationScript.sml +++ b/hol4/ErrorValidationScript.sml @@ -2323,9 +2323,9 @@ Proof \\ irule computeError_up \\ irule contained_leq_maxAbs \\ gs[contained_def] \\ conj_tac \\ irule REAL_LE_TRANS - >- (asm_exists_tac \\ gs[] \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + >- (asm_exists_tac \\ gs[] \\ irule SQRT_MONO_LE \\ real_prove) \\ once_rewrite_tac[CONJ_COMM] \\ asm_exists_tac \\ gs[] - \\ irule transcTheory.SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC + \\ irule SQRT_MONO_LE \\ gs[] \\ REAL_ASM_ARITH_TAC QED (** @@ -2440,7 +2440,10 @@ Proof by ( inversion `eval_expr E1 _ (Unop Sqrt _) _ _` eval_expr_cases \\ fs[] \\ Cases_on ‘m1'’ \\ gs[isCompat_def, perturb_def] - \\ imp_res_tac meps_0_deterministic \\ gs[]) + \\ ‘v1'' = v1’ suffices_by gs[] + \\ irule meps_0_deterministic + \\ qexistsl_tac [‘E1’, ‘λ e. FloverMapTree_find e Gamma’, ‘e’] + \\ gs[]) \\ rveq \\ gs[]) >- simp[Once validErrorbound_def] \\ irule Unop_sqrt' \\ fsrw_tac [SATISFY_ss] [updDefVars_def] diff --git a/hol4/IEEE_connectionScript.sml b/hol4/IEEE_connectionScript.sml index 8428a2cf8fbbb0856ab26c829be52e7fa6c1926e..e966341aa18ff56c552a0029f118e7ef5048cfaa 100644 --- a/hol4/IEEE_connectionScript.sml +++ b/hol4/IEEE_connectionScript.sml @@ -808,7 +808,7 @@ Proof \\ fs[perturb_def, evalUnop_def] \\ fs[REAL_INV_1OVER, mTypeToR_def, isCompat_def, minExponentPos_def]) (* sqrt 0 *) - \\ ‘0 < sqrt (float_to_real (fp64_to_float v))’ by (irule transcTheory.SQRT_POS_LT \\ gs[]) + \\ ‘0 < sqrt (float_to_real (fp64_to_float v))’ by (irule SQRT_POS_LT \\ gs[]) \\ gs[evalUnop_def]) >- ( rename1 `Binop b (toRExp e1) (toRExp e2)` \\ rveq diff --git a/hol4/IntervalArithScript.sml b/hol4/IntervalArithScript.sml index 3419d12a6a7c2a008da83c8ef66e6422c34915eb..7dd1cce457e15c1e262db48c1119a88f16cad1da 100644 --- a/hol4/IntervalArithScript.sml +++ b/hol4/IntervalArithScript.sml @@ -280,7 +280,7 @@ Theorem iv_sqrt_preserves_valid: 0 ≤ IVlo iv ∧ valid iv ⇒ valid (sqrtInterval iv) Proof gs[valid_def, sqrtInterval_def] \\ rpt strip_tac - \\ irule transcTheory.SQRT_MONO_LE \\ gs[] + \\ irule SQRT_MONO_LE \\ gs[] QED val interval_addition_valid = store_thm ("interval_addition_valid", diff --git a/hol4/IntervalValidationScript.sml b/hol4/IntervalValidationScript.sml index 62c342676294460b3886a42adfa202c8520af23d..74652b5653adfbb5759d857a6aad3661cb5651fc 100644 --- a/hol4/IntervalValidationScript.sml +++ b/hol4/IntervalValidationScript.sml @@ -282,10 +282,10 @@ Proof >- ( irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] - \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ irule SQRT_MONO_LE \\ real_prove) \\ irule REAL_LE_TRANS \\ qexists_tac ‘sqrt (SND iv)’ \\ conj_tac >- ( - irule transcTheory.SQRT_MONO_LE \\ gs[] + irule SQRT_MONO_LE \\ gs[] \\ irule REAL_LE_TRANS \\ qexists_tac ‘FST iv’ \\ real_prove) \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[]) (* Binary operator case *) @@ -559,7 +559,7 @@ Proof \\ strip_tac \\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[] \\ irule REAL_LE_TRANS \\ qexists_tac ‘sqrt(SND iv)’\\ gs[] - \\ irule transcTheory.SQRT_MONO_LE \\ real_prove) + \\ irule SQRT_MONO_LE \\ real_prove) >- (rename1 `Binop b f1 f2` \\ rpt (first_x_assum (qspecl_then [`A`, `P`, `dVars`] destruct) \\ fs[]) \\ rveq \\ fs[] diff --git a/hol4/sqrtApproxScript.sml b/hol4/sqrtApproxScript.sml index cec97a1908e451b4c7bd9b8cde9a756af1388440..d15f2768d4ecd9f7f4449e52ff38ebfc44bc69a4 100644 --- a/hol4/sqrtApproxScript.sml +++ b/hol4/sqrtApproxScript.sml @@ -3,22 +3,6 @@ open preambleFloVer; val _ = new_theory "sqrtApprox"; -(* -Definition newton_helper_def: - newton_helper 0 n (x:real) = x ∧ - newton_helper (SUC n) (init:real) x = newton_helper n init ((x + (init / x)) / 2) -End - -Definition newton_def: - newton (n:num) (x:real) = newton_helper n x x -End - -Definition newton_def: - newton 0 n (x:real) = x ∧ - newton (SUC n) m x = newton n m ((x + (&m / x)) / 2) -End -*) - Definition newton_def: newton 0 n (x:real) = x ∧ newton (SUC n) (m:real) x = newton n m ((x + (m / x)) / 2)