Expressions.v 12 KB
Newer Older
1
(**
2
  Formalization of the base expression language for the daisy framework
3
 **)
4
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
5
Require Import Daisy.Infra.RealRationalProps Daisy.Infra.RationalSimps.
6
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps Daisy.Infra.NatSet Daisy.IntervalArithQ Daisy.IntervalArith Daisy.Infra.MachineType.
7

8
9
10
11
12
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
Definition binopEqBool (b1:binop) (b2:binop) :=
='s avatar
= committed
15
16
17
18
19
20
  match b1, b2 with
  | Plus, Plus => true
  | Sub,  Sub  => true
  | Mult, Mult => true
  | Div,  Div  => true
  | _,_ => false
21
22
  end.

23
24
25
26
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
27
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
28
29
30
31
32
33
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
34

35
36
37
38
39
40
Lemma binopEqBool_refl b:
  binopEqBool b b = true.
Proof.
  case b; auto.
Qed.

41
42
43
44
45
46
(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

47
Definition unopEqBool (o1:unop) (o2:unop) :=
='s avatar
= committed
48
49
50
51
  match o1, o2 with
  | Neg, Neg => true
  | Inv, Inv => true
  | _ , _ => false
52
53
  end.

54
55
56
57
58
59
Lemma unopEqBool_refl b:
  unopEqBool b b = true.
Proof.
  case b; auto.
Qed.

60
61
(**
   Define evaluation for unary operators on reals.
62
   Errors are added in the expression evaluation level later.
63
 **)
64
Definition evalUnop (o:unop) (v:R):=
65
66
67
68
69
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

70
71


72
(**
73
74
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
75
**)
76
Inductive exp (V:Type): Type :=
77
  Var: nat -> exp V
78
| Const: mType -> V -> exp V
79
| Unop: unop -> exp V -> exp V
80
81
| Binop: binop -> exp V -> exp V -> exp V
| Downcast: mType -> exp V -> exp V.
82

83
84
85
86
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
87
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
='s avatar
= committed
88
  match e1, e2 with
89
  | Var _ v1, Var _ v2 => (v1 =? v2)
='s avatar
= committed
90
91
92
93
94
  | Const m1 n1, Const m2 n2 => andb (mTypeEqBool m1 m2) (Qeq_bool n1 n2)
  | Unop o1 e11, Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
  | Binop o1 e11 e12, Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
  | Downcast m1 f1, Downcast m2 f2 => andb (mTypeEqBool m1 m2) (expEqBool f1 f2)
  | _, _ => false
95
96
  end.

97

98
Lemma expEqBool_refl e:
99
100
  expEqBool e e = true.
Proof.
='s avatar
= committed
101
  induction e; try (apply andb_true_iff; split); simpl in *; auto; try (apply EquivEqBoolEq; auto).
102
103
104
105
106
107
108
  - symmetry; apply beq_nat_refl.
  - apply Qeq_bool_iff; lra.
  - case u; auto.
  - case b; auto.
  - apply andb_true_iff; split.
    apply IHe1. apply IHe2.
Qed.
109

110
111
112
113
114
115
Lemma beq_nat_sym a b:
  beq_nat a b = beq_nat b a.
Proof.
  case_eq (a =? b); intros.
  - apply beq_nat_true in H.
    rewrite H.
='s avatar
= committed
116
    apply beq_nat_refl.
117
118
119
120
121
122
  - apply beq_nat_false in H.
    case_eq (b =? a); intros.
    + apply beq_nat_true in H0.
      rewrite H0 in H.
      auto.
    + auto.
='s avatar
= committed
123
Qed.
124
125
126
127
128
129

Lemma expEqBool_sym e e':
  expEqBool e e' = expEqBool e' e.
Proof.
  revert e'.
  induction e; intros e'; destruct e'; simpl; try auto.
130
  - apply beq_nat_sym.
131
132
133
134
135
136
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply Qeq_bool_sym.
  - f_equal.
    + destruct u; auto.
    + apply IHe.
='s avatar
= committed
137
  - f_equal.
138
139
140
141
142
143
144
145
146
    + destruct b; auto.
    + f_equal.
      * apply IHe1.
      * apply IHe2.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply IHe.
Qed.

='s avatar
= committed
147
148
149
150
151
Lemma expEqBool_trans e f g:
  expEqBool e f = true ->
  expEqBool f g = true ->
  expEqBool e g = true.
Proof.
152
153
154
  revert e f g; induction e; destruct f; intros; simpl in H; inversion H; rewrite H; clear H; destruct g; simpl in H0; inversion H0; rewrite H0; clear H0; try (apply andb_true_iff in H1; destruct H1; apply andb_true_iff in H2; destruct H2; simpl).
  - apply beq_nat_true in H2.
    apply beq_nat_true in H1.
='s avatar
= committed
155
    subst.
156
    unfold expEqBool.
='s avatar
= committed
157
    rewrite <- beq_nat_refl.
='s avatar
= committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    auto.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    subst.
    rewrite mTypeEqBool_refl; simpl.
    apply Qeq_bool_iff in H2.
    apply Qeq_bool_iff in H0.
    apply Qeq_bool_iff.
    lra.
  - assert (u = u0) by (destruct u; destruct u0; inversion H1; auto).
    assert (u0 = u1) by (destruct u0; destruct u1; inversion H; auto).
    subst.
    assert (unopEqBool u1 u1 = true) by (destruct u1; auto).
    apply andb_true_iff; split; try auto.
    eapply IHe; eauto.
  - apply andb_true_iff; split.
    + destruct b; destruct b0; destruct b1; auto.
    + apply andb_true_iff in H2; destruct H2.
      apply andb_true_iff in H0; destruct H0.
      apply andb_true_iff; split.
      eapply IHe1; eauto.
      eapply IHe2; eauto.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    subst.
    rewrite mTypeEqBool_refl; simpl.
    eapply IHe; eauto.
Qed.

='s avatar
= committed
187

='s avatar
= committed
188

189
190
Fixpoint toRExp (e:exp Q) :=
  match e with
191
  |Var _ v => Var R v
192
  |Const m n => Const m (Q2R n)
193
194
195
  |Unop o e1 => Unop o (toRExp e1)
  |Binop o e1 e2 => Binop o (toRExp e1) (toRExp e2)
  |Downcast m e1 => Downcast m (toRExp e1)
196
  end.
197

198
199
Fixpoint toREval (e:exp R) :=
  match e with
200
  | Var _ v => Var R v
201
  | Const _ n => Const M0 n
202
203
  | Unop o e1 => Unop o (toREval e1)
  | Binop o e1 e2 => Binop o (toREval e1) (toREval e2)
204
  | Downcast _ e1 =>  (toREval e1)
205
  end.
206

='s avatar
= committed
207
208
209
210
211
Fixpoint toREvalVars (d:nat -> option mType) (n:nat) :=
  match d n with
  | Some m => Some M0
  | None => None
  end.
212
213


214
215
216
217
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
218
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
219

220
(**
221
Define expression evaluation relation parametric by an "error" epsilon.
222
223
224
The result value expresses float computations according to the IEEE standard,
using a perturbation of the real valued computation by (1 + delta), where
|delta| <= machine epsilon.
225
**)
226
Inductive eval_exp (E:env) (defVars: nat -> option mType) :(exp R) -> R -> mType -> Prop :=
227
| Var_load m x v:
228
    defVars x = Some m ->
229
    E x = Some v ->
230
    eval_exp E defVars (Var R x) v m
231
232
| Const_dist m n delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
233
    eval_exp E defVars (Const m n) (perturb n delta) m
234
| Unop_neg m f1 v1:
235
236
    eval_exp E defVars f1 v1 m ->
    eval_exp E defVars (Unop Neg f1) (evalUnop Neg v1) m
237
238
| Unop_inv m f1 v1 delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
239
240
    eval_exp E defVars  f1 v1 m ->
    eval_exp E defVars (Unop Inv f1) (perturb (evalUnop Inv v1) delta) m
241
242
| Binop_dist m1 m2 op f1 f2 v1 v2 delta:
    Rle (Rabs delta) (Q2R (meps (computeJoin m1 m2))) ->
243
244
    eval_exp E defVars f1 v1 m1 ->
    eval_exp E defVars f2 v2 m2 ->
245
    ((op = Div) -> (~ v2 = 0)%R) ->
246
    eval_exp E defVars (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta)  (computeJoin m1 m2)
247
| Downcast_dist m m1 f1 v1 delta:
248
    (* Downcast expression f1 (evaluating to machine type m1), to a machine type m, less precise than m1.*)
249
250
    isMorePrecise m1 m = true ->
    Rle (Rabs delta) (Q2R (meps m)) ->
251
252
    eval_exp E defVars f1 v1 m1 ->
    eval_exp E defVars (Downcast m f1) (perturb v1 delta) m.
253
254


255
256
257
258
259
(**
  Define the set of "used" variables of an expression to be the set of variables
  occuring in it
**)
Fixpoint usedVars (V:Type) (e:exp V) :NatSet.t :=
260
  match e with
261
  | Var _ x => NatSet.singleton x
262
263
  | Unop u e1 => usedVars e1
  | Binop b e1 e2 => NatSet.union (usedVars e1) (usedVars e2)
264
  | Downcast _ e1 => usedVars e1
265
266
  | _ => NatSet.empty
  end.
267

268
(**
269
  If |delta| <= 0 then perturb v delta is exactly v.
270
**)
271
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
272
273
274
275
276
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
277
  lra.
Heiko Becker's avatar
Heiko Becker committed
278
279
Qed.

280
(* TODO: need of `general` case? *)
281
Lemma general_meps_0_deterministic (f:exp R) (E:env) defVars:
282
283
  forall v1 v2 m1,
    m1 = M0 ->
284
285
    eval_exp E defVars (toREval f) v1 m1 ->
    eval_exp E defVars (toREval f) v2 M0 ->
286
287
    v1 = v2.
Proof.
288
  induction f; intros * m10_eq eval_v1 eval_v2.
289
290
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
291
    rewrite H6 in H1; inversion H1; subst; auto.
292
293
294
295
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
='s avatar
= committed
296
    + apply Ropp_eq_compat. apply (IHf v0 v3 M0); auto.
297
298
    + inversion H4.
    + inversion H5.
299
    + rewrite (IHf v0 v3 M0); auto.
300
301
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
302
303
    destruct m0; destruct m2; inversion H5.
    destruct m3; destruct m4; inversion H11.
304
    simpl in *.
305
306
    rewrite (IHf1 v0 v4 M0); auto.
    rewrite (IHf2 v5 v3 M0); auto.
307
308
309
    rewrite Q2R0_is_0 in H2,H12.
    rewrite delta_0_deterministic; auto.
    rewrite delta_0_deterministic; auto.
310
311
  - simpl toREval in eval_v1.
    simpl toREval in eval_v2.
312
    apply (IHf v1 v2 m1); auto.
313
314
Qed.

315
316
317
318
319
320
321
322
(* Lemma rnd_0_deterministic f E m v: *)
(*   eval_exp E (toREval (Downcast m f)) v M0 <-> *)
(*   eval_exp E (toREval f) v M0. *)
(* Proof. *)
(*   split; intros. *)
(*   - simpl in H. auto. *)
(*   - simpl; auto. *)
(* Qed. *)
323

='s avatar
= committed
324

325
(**
326
Evaluation with 0 as machine epsilon is deterministic
327
**)
328
Lemma meps_0_deterministic (f:exp R) (E:env) defVars:
329
  forall v1 v2,
330
331
  eval_exp E defVars (toREval f) v1 M0 ->
  eval_exp E defVars (toREval f) v2 M0 ->
332
333
  v1 = v2.
Proof.
334
  intros v1 v2 ev1 ev2.
335
  assert (M0 = M0) by auto.
='s avatar
= committed
336
  apply (general_meps_0_deterministic f H ev1 ev2).
337
338
Qed.

339

340
341
342
343
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
344
variables in the Environment.
345
 **)
346
347
Lemma binary_unfolding b f1 f2 m E vF defVars:
  eval_exp E defVars (Binop b f1 f2) vF m ->
348
  exists vF1 vF2 m1 m2,
349
    m = computeJoin m1 m2 /\
350
351
    eval_exp E defVars f1 vF1 m1 /\
    eval_exp E defVars f2 vF2 m2 /\
352
    eval_exp (updEnv 2 vF2 (updEnv 1 vF1 emptyEnv))
='s avatar
= committed
353
             (updDefVars 2 m2 (updDefVars 1 m1 defVars))
354
             (Binop b (Var R 1) (Var R 2)) vF m.
355
Proof.
356
357
  intros eval_float.
  inversion eval_float; subst.
358
359
  exists v1 ; exists v2; exists m1; exists m2; repeat split; try auto.
  eapply Binop_dist; eauto.
360
361
362
363
  - pose proof (isMorePrecise_refl m1).
    eapply Var_load; eauto.
  - pose proof (isMorePrecise_refl m2).
    eapply Var_load; eauto.
364
365
Qed.

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
(* (* Analogous lemma for unary expressions. *) *)
(* Lemma unary_unfolding (e:exp R) (m:mType) (E:env) (v:R) defVars: *)
(*   (eval_exp E defVars (Unop Inv e) v m -> *)
(*    exists v1 m1, *)
(*      eval_exp E defVars e v1 m1 /\ *)
(*      eval_exp (updEnv 1 v1 E) (fun n => if (n =? 1) then Some m1 else defVars n) (Unop Inv (Var R 1)) v m). *)
(* Proof. *)
(*   intros eval_un. *)
(*     inversion eval_un; subst. *)
(*     exists v1; exists m. *)
(*     repeat split; try auto. *)
(*     econstructor; try auto. *)
(*     pose proof (isMorePrecise_refl m). *)
(*     econstructor; eauto. *)
(* Qed. *)
381

382
383
384
385
386
387
(* (** *)
(*   Using the parametric expressions, define boolean expressions for conditionals *)
(* **) *)
(* Inductive bexp (V:Type) : Type := *)
(*   leq: exp V -> exp V -> bexp V *)
(* | less: exp V -> exp V -> bexp V. *)
388

389
(**
390
  Define evaluation of boolean expressions
391
 **)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
(* Inductive bval (E:env): (bexp R) -> Prop -> Prop := *)
(*   leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (leq f1 f2) (Rle v1 v2) *)
(* |less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (less f1 f2) (Rlt v1 v2). *)
(* (** *)
(*  Simplify arithmetic later by making > >= only abbreviations *)
(* **) *)
(* Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1. *)
(* Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1. *)