Expressions.v 7.83 KB
Newer Older
1
2
(**
Formalization of the base expression language for the daisy framework
3
Required in all files, since we will always reason about expressions.
4
 **)
5
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
6
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps.
7
8
9
10
11
12
Set Implicit Arguments.
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
Definition binopEqBool (b1:binop) (b2:binop) :=
15
16
17
18
19
20
21
  match b1 with
    Plus => match b2 with Plus => true |_ => false end
  | Sub => match b2 with Sub => true |_ => false end
  | Mult => match b2 with Mult => true |_ => false end
  | Div => match b2 with Div => true |_ => false end
  end.

22
23
24
25
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
26
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
27
28
29
30
31
32
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
33
34
35
36
37
38
39

(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

40
Definition unopEqBool (o1:unop) (o2:unop) :=
41
42
43
44
45
46
47
  match o1 with
  |Neg => match o2 with |Neg => true |_=> false end
  |Inv => match o2 with |Inv => true |_ => false end
  end.

(**
   Define evaluation for unary operators on reals.
48
   Errors are added in the expression evaluation level later.
49
 **)
50
Definition evalUnop (o:unop) (v:R):=
51
52
53
54
55
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

56
(**
57
58
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
59
60
61
62
  Note that we differentiate between wether we use a variable from the environment or a parameter.
  Parameters do not have error bounds in the invariants, so they must be perturbed, but variables from the
  program will be perturbed upon binding, so we do not need to perturb them.
**)
63
64
Inductive exp (V:Type): Type :=
  Var: nat -> exp V
65
| Param: nat -> exp V
66
| Const: V -> exp V
67
| Unop: unop -> exp V -> exp V
68
| Binop: binop -> exp V -> exp V -> exp V.
69

70
71
72
73
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
74
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  match e1 with
  |Var _ v1 =>
   match e2 with
   |Var _ v2 => v1 =? v2
   | _=> false
   end
  |Param _ v1 =>
   match e2 with
   |Param _ v2 => v1 =? v2
   | _=> false
   end
  |Const n1 =>
   match e2 with
   |Const n2 => Qeq_bool n1 n2
   | _=> false
   end
91
92
  |Unop o1 e11 =>
   match e2 with
93
   |Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
94
95
96
   |_ => false
   end
  |Binop o1 e11 e12 =>
97
   match e2 with
98
   |Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
99
100
101
   |_ => false
   end
  end.
102

103
104
105
106
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
107
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
108

109
(**
110
111
112
113
114
115
Define expression evaluation relation parametric by an "error" epsilon.
This value will be used later to express float computations using a perturbation
of the real valued computation by (1 + delta), where |delta| <= machine epsilon.

It is important that variables are not perturbed when loading from an environment.
This is the case, since loading a float value should not increase an additional error.
116
Unary negation is special! We do not have a new error here since IEE 754 gives us a sign bit
117
**)
118
119
Inductive eval_exp (eps:R) (VarEnv:env) (ParamEnv:env) (P:precond) : (exp R) -> R -> Prop :=
  Var_load x: eval_exp eps VarEnv ParamEnv P (Var R x) (VarEnv x)
Heiko Becker's avatar
Heiko Becker committed
120
121
| Param_acc x delta:
    ((Rabs delta) <= eps)%R ->
122
123
    ((perturb (Q2R (fst (P x))) delta) <= perturb (ParamEnv x) delta <= (perturb (Q2R (snd (P x))) delta))%R ->
    eval_exp eps VarEnv ParamEnv P (Param R x) (perturb (ParamEnv x) delta)
124
125
| Const_dist n delta:
    Rle (Rabs delta) eps ->
126
127
128
129
    eval_exp eps VarEnv ParamEnv P (Const n) (perturb n delta)
| Unop_neg f1 v1:
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P (Unop Neg f1) (evalUnop Neg v1)
130
| Unop_inv f1 v1 delta:
131
    Rle (Rabs delta) eps ->
132
133
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P (Unop Inv f1) (perturb (evalUnop Inv v1) delta)
134
135
| Binop_dist op f1 f2 v1 v2 delta:
    Rle (Rabs delta) eps ->
136
137
138
                eval_exp eps VarEnv ParamEnv P f1 v1 ->
                eval_exp eps VarEnv ParamEnv P f2 v2 ->
                eval_exp eps VarEnv ParamEnv P (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta).
139

140
(**
141
If |delta| <= 0 then perturb v delta is exactly v.
142
**)
143
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
144
145
146
147
148
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
149
  lra.
Heiko Becker's avatar
Heiko Becker committed
150
151
Qed.

152
(**
153
Evaluation with 0 as machine epsilon is deterministic
154
**)
155
Lemma meps_0_deterministic (f:exp R) (VarEnv ParamEnv:env) (P:precond):
156
  forall v1 v2,
157
158
  eval_exp R0 VarEnv ParamEnv P f v1 ->
  eval_exp R0 VarEnv ParamEnv P f v2 ->
159
160
  v1 = v2.
Proof.
161
162
  induction f; intros v1 v2 eval_v1 eval_v2;
    inversion eval_v1; inversion eval_v2;
163
      repeat try rewrite delta_0_deterministic; subst; auto.
164
  - rewrite (IHf v0 v3); auto.
165
166
  - inversion H3.
  - inversion H4.
167
168
169
  - rewrite (IHf v0 v3); auto.
  - rewrite (IHf1 v0 v4); auto.
    rewrite (IHf2 v3 v5); auto.
170
171
Qed.

172
173
174
175
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
176
variables in the Eironment.
177
This relies on the property that variables are not perturbed as opposed to parameters
178
**)
179
180
Lemma binary_unfolding (b:binop) (f1:exp R) (f2:exp R) (eps:R) (VarEnv ParamEnv:env) (P:precond) (v:R):
  (eval_exp eps VarEnv ParamEnv P (Binop b f1 f2) v <->
181
   exists v1 v2,
182
183
184
     eval_exp eps VarEnv ParamEnv P f1 v1 /\
     eval_exp eps VarEnv ParamEnv P f2 v2 /\
     eval_exp eps (updEnv 2 v2 (updEnv 1 v1 VarEnv)) ParamEnv P (Binop b (Var R 1) (Var R 2)) v).
185
186
187
188
189
190
Proof.
  split.
  - intros eval_bin.
    inversion eval_bin; subst.
    exists v1, v2.
    repeat split; try auto.
191
    constructor; try auto;
192
193
    constructor; auto.
  - intros exists_val.
194
195
    destruct exists_val as [v1 [v2 [eval_f1 [eval_f2 eval_e_E]]]].
    inversion eval_e_E; subst.
196
197
198
199
200
    inversion H4; inversion H5; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
Qed.

201
202
203
(**
Analogous lemma for unary expressions.
**)
204
205
Lemma unary_unfolding (e:exp R) (eps:R) (VarEnv ParamEnv:env) (P:precond) (v:R):
  (eval_exp eps VarEnv ParamEnv P (Unop Inv e) v <->
206
   exists v1,
207
208
     eval_exp eps VarEnv ParamEnv P e v1 /\
     eval_exp eps (updEnv 1 v1 VarEnv) ParamEnv P (Unop Inv (Var R 1)) v).
209
210
211
212
213
214
215
216
217
Proof.
  split.
  - intros eval_un.
    inversion eval_un; subst.
    exists v1.
    repeat split; try auto.
    constructor; try auto.
    constructor; auto.
  - intros exists_val.
218
219
    destruct exists_val as [v1 [eval_f1 eval_e_E]].
    inversion eval_e_E; subst.
220
221
222
223
224
    inversion H1; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
Qed.

225
226
227
228
229
230
231
232
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
(**
  Define evaluation of booleans for reals
233
 **)
234
Inductive bval (eps:R) (VarEnv ParamEnv:env) (P:precond): (bexp R) -> Prop -> Prop :=
235
  leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R):
236
237
238
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P f2 v2 ->
    bval eps VarEnv ParamEnv P (leq f1 f2) (Rle v1 v2)
239
|less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R):
240
241
242
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P f2 v2 ->
    bval eps VarEnv ParamEnv P (less f1 f2) (Rlt v1 v2).
243
244
245
(**
 Simplify arithmetic later by making > >= only abbreviations
**)
246
247
Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1.
Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1.