Expressions.v 7.92 KB
Newer Older
1 2
(**
Formalization of the base expression language for the daisy framework
3
Required in all files, since we will always reason about expressions.
4
 **)
5
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
6
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps.
7 8 9 10 11 12
Set Implicit Arguments.
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
Definition binopEqBool (b1:binop) (b2:binop) :=
15 16 17 18 19 20 21
  match b1 with
    Plus => match b2 with Plus => true |_ => false end
  | Sub => match b2 with Sub => true |_ => false end
  | Mult => match b2 with Mult => true |_ => false end
  | Div => match b2 with Div => true |_ => false end
  end.

22 23 24 25
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
26
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
27 28 29 30 31 32
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
33 34 35 36 37 38 39

(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

40
Definition unopEqBool (o1:unop) (o2:unop) :=
41 42 43 44 45 46 47
  match o1 with
  |Neg => match o2 with |Neg => true |_=> false end
  |Inv => match o2 with |Inv => true |_ => false end
  end.

(**
   Define evaluation for unary operators on reals.
48
   Errors are added in the expression evaluation level later.
49
 **)
50
Definition evalUnop (o:unop) (v:R):=
51 52 53 54 55
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

56
(**
57 58
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
59 60 61 62
  Note that we differentiate between wether we use a variable from the environment or a parameter.
  Parameters do not have error bounds in the invariants, so they must be perturbed, but variables from the
  program will be perturbed upon binding, so we do not need to perturb them.
**)
63 64
Inductive exp (V:Type): Type :=
  Var: nat -> exp V
65
| Param: nat -> exp V
66
| Const: V -> exp V
67
| Unop: unop -> exp V -> exp V
68
| Binop: binop -> exp V -> exp V -> exp V.
69

70 71 72 73
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
74
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  match e1 with
  |Var _ v1 =>
   match e2 with
   |Var _ v2 => v1 =? v2
   | _=> false
   end
  |Param _ v1 =>
   match e2 with
   |Param _ v2 => v1 =? v2
   | _=> false
   end
  |Const n1 =>
   match e2 with
   |Const n2 => Qeq_bool n1 n2
   | _=> false
   end
91 92
  |Unop o1 e11 =>
   match e2 with
93
   |Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
94 95 96
   |_ => false
   end
  |Binop o1 e11 e12 =>
97
   match e2 with
98
   |Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
99 100 101
   |_ => false
   end
  end.
102

103 104 105 106
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
107
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
108

109
(**
110 111 112 113 114 115
Define expression evaluation relation parametric by an "error" epsilon.
This value will be used later to express float computations using a perturbation
of the real valued computation by (1 + delta), where |delta| <= machine epsilon.

It is important that variables are not perturbed when loading from an environment.
This is the case, since loading a float value should not increase an additional error.
116
Unary negation is special! We do not have a new error here since IEE 754 gives us a sign bit
117
**)
118 119
Inductive eval_exp (eps:R) (VarEnv:env) (ParamEnv:env) (P:precond) : (exp R) -> R -> Prop :=
  Var_load x: eval_exp eps VarEnv ParamEnv P (Var R x) (VarEnv x)
120
| Param_acc x delta delta_lo delta_hi:
Heiko Becker's avatar
Heiko Becker committed
121
    ((Rabs delta) <= eps)%R ->
122 123 124
    ((Rabs delta_lo) <= eps)%R ->
    ((Rabs delta_hi) <= eps)%R ->
    ((perturb (Q2R (fst (P x))) delta_lo) <= perturb (ParamEnv x) delta <= (perturb (Q2R (snd (P x))) delta_hi))%R ->
125
    eval_exp eps VarEnv ParamEnv P (Param R x) (perturb (ParamEnv x) delta)
126 127
| Const_dist n delta:
    Rle (Rabs delta) eps ->
128 129 130 131
    eval_exp eps VarEnv ParamEnv P (Const n) (perturb n delta)
| Unop_neg f1 v1:
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P (Unop Neg f1) (evalUnop Neg v1)
132
| Unop_inv f1 v1 delta:
133
    Rle (Rabs delta) eps ->
134 135
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P (Unop Inv f1) (perturb (evalUnop Inv v1) delta)
136 137
| Binop_dist op f1 f2 v1 v2 delta:
    Rle (Rabs delta) eps ->
138 139 140
                eval_exp eps VarEnv ParamEnv P f1 v1 ->
                eval_exp eps VarEnv ParamEnv P f2 v2 ->
                eval_exp eps VarEnv ParamEnv P (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta).
141

142
(**
143
If |delta| <= 0 then perturb v delta is exactly v.
144
**)
145
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
146 147 148 149 150
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
151
  lra.
Heiko Becker's avatar
Heiko Becker committed
152 153
Qed.

154
(**
155
Evaluation with 0 as machine epsilon is deterministic
156
**)
157
Lemma meps_0_deterministic (f:exp R) (VarEnv ParamEnv:env) (P:precond):
158
  forall v1 v2,
159 160
  eval_exp R0 VarEnv ParamEnv P f v1 ->
  eval_exp R0 VarEnv ParamEnv P f v2 ->
161 162
  v1 = v2.
Proof.
163 164
  induction f; intros v1 v2 eval_v1 eval_v2;
    inversion eval_v1; inversion eval_v2;
165
      repeat try rewrite delta_0_deterministic; subst; auto.
166
  - rewrite (IHf v0 v3); auto.
167 168
  - inversion H3.
  - inversion H4.
169 170 171
  - rewrite (IHf v0 v3); auto.
  - rewrite (IHf1 v0 v4); auto.
    rewrite (IHf2 v3 v5); auto.
172 173
Qed.

174 175 176 177
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
178
variables in the Eironment.
179
This relies on the property that variables are not perturbed as opposed to parameters
180
**)
181 182
Lemma binary_unfolding (b:binop) (f1:exp R) (f2:exp R) (eps:R) (VarEnv ParamEnv:env) (P:precond) (v:R):
  (eval_exp eps VarEnv ParamEnv P (Binop b f1 f2) v <->
183
   exists v1 v2,
184 185 186
     eval_exp eps VarEnv ParamEnv P f1 v1 /\
     eval_exp eps VarEnv ParamEnv P f2 v2 /\
     eval_exp eps (updEnv 2 v2 (updEnv 1 v1 VarEnv)) ParamEnv P (Binop b (Var R 1) (Var R 2)) v).
187 188 189 190 191 192
Proof.
  split.
  - intros eval_bin.
    inversion eval_bin; subst.
    exists v1, v2.
    repeat split; try auto.
193
    constructor; try auto;
194 195
    constructor; auto.
  - intros exists_val.
196 197
    destruct exists_val as [v1 [v2 [eval_f1 [eval_f2 eval_e_E]]]].
    inversion eval_e_E; subst.
198 199 200 201 202
    inversion H4; inversion H5; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
Qed.

203 204 205
(**
Analogous lemma for unary expressions.
**)
206 207
Lemma unary_unfolding (e:exp R) (eps:R) (VarEnv ParamEnv:env) (P:precond) (v:R):
  (eval_exp eps VarEnv ParamEnv P (Unop Inv e) v <->
208
   exists v1,
209 210
     eval_exp eps VarEnv ParamEnv P e v1 /\
     eval_exp eps (updEnv 1 v1 VarEnv) ParamEnv P (Unop Inv (Var R 1)) v).
211 212 213 214 215 216 217 218 219
Proof.
  split.
  - intros eval_un.
    inversion eval_un; subst.
    exists v1.
    repeat split; try auto.
    constructor; try auto.
    constructor; auto.
  - intros exists_val.
220 221
    destruct exists_val as [v1 [eval_f1 eval_e_E]].
    inversion eval_e_E; subst.
222 223 224 225 226
    inversion H1; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
Qed.

227 228 229 230 231 232 233 234
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
(**
  Define evaluation of booleans for reals
235
 **)
236
Inductive bval (eps:R) (VarEnv ParamEnv:env) (P:precond): (bexp R) -> Prop -> Prop :=
237
  leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R):
238 239 240
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P f2 v2 ->
    bval eps VarEnv ParamEnv P (leq f1 f2) (Rle v1 v2)
241
|less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R):
242 243 244
    eval_exp eps VarEnv ParamEnv P f1 v1 ->
    eval_exp eps VarEnv ParamEnv P f2 v2 ->
    bval eps VarEnv ParamEnv P (less f1 f2) (Rlt v1 v2).
245 246 247
(**
 Simplify arithmetic later by making > >= only abbreviations
**)
248 249
Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1.
Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1.